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Generalized linear models:  Quick review

Steps for fitting a GLM:
1. Specify distribution for response variable 

• What we want to predict
2. Specify link function 

• Remember the link function calculates the expected 
value of the response variable given the linear 
predictor 

3. Specify linear predictor 
• What we think influences what we want to predict

Example:
What is the relationship between counts of species i and 

covariate x? 
𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log 𝜆! = 𝛃𝐱!



How do you choose which distribution?

Step 1: Is your response variable DISCRETE or 
CONTINUOUS?



Common distributions for response variables

Step 1: If DISCRETE
Name Notation Domain Range

Bernoulli 𝐵~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 0 ≤ p ≤ 1 B = {0, 1}

Binomial 𝑁~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝, 𝑛) 0 ≤ p ≤ 1 N = {0, 1, …, n}

Poisson 𝑁~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ) λ>0 N = {0, 1, …,∞}

Negative binomial 𝑁~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(λ, θ) λ>0
θ>0

N = {0, 1, …,∞}



Common distributions for response variables

Step 1: If DISCRETE
Name Notation Domain Range

Bernoulli 𝐵~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 0 ≤ p ≤ 1 B = {0, 1}

Binomial 𝑁~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝, 𝑛) 0 ≤ p ≤ 1 N = {0, 1, …, n}

Poisson 𝑁~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ) λ > 0 N = {0, 1, …,∞}

Negative binomial 𝑁~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(λ, θ) λ > 0
Θ > 0

N = {0, 1, …,∞}

Step 1a: What is the range of possible values?
• 0 or 1 -> Bernoulli
• Between 0 and N (N is # of trials) -> Binomial
• >= 0  Poisson
• >= 0 and variance changes with mean -> 

Negative binomial



Common distributions for response variables

Step 1: If CONTINUOUS

Name Notation Domain Range

Normal 𝑌~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎!) σ2 > 0 Unrestricted

Lognormal log(𝑌)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎!) σ2 > 0 Y > 0

Gamma 𝑌~𝐺𝑎𝑚𝑚𝑎(𝜇, 𝐶𝑉) μ > 0
CV > 0

Y > 0

Beta 𝑝~𝐵𝑒𝑡𝑎(𝛼, 𝛽) α > 0, β > 0 0 < p < 1

Step 1b: What is the range of possible values?
• -∞ to +∞ -> Normal
• > 0 -> Lognormal or Gamma
• > 0 and < 1 -> Beta

Step 1b: Is there precedent?



Choice of link functions

Step 2: Specify link function based on selected 
distribution
• Remember that the link function acts like transformation 

of the
response variable.

• The link function establishes the connection between the 
linear predictor  and the mean of the distribution.

• There is a ‘natural link’ associated with each distribution –
the canonical link function
• For our Poisson example:

• Canonical link is typically used, but don’t neglect 
alternatives
• Enter ?family to see options in R

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log 𝜆! = 𝛃𝐱!



What makes GLMs linear?

Step 3: Specify linear predictor
• Linear predictor expresses our hypothesis about 

what influences our response variable
• In a GLM, all terms in the linear predictor are linear.
• Expanding on our Poisson example: 

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log 𝜆! = 𝛽D+ 𝛽ETime𝑖 + 𝛽FTemp𝑖



What makes GLMs linear?

Step 3: Specify linear predictor
• Linear predictor expresses our hypothesis about 

what influences our response variable
• In a GLM, all terms in the linear predictor are linear.
• Expanding on our Poisson example: 

• If we suspect things are nonlinear, we can include a 
polynomial: 𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)

log 𝜆! = 𝛽D+𝛽ETime𝑖 + 𝛽FTemp𝑖 + 𝛽GTemp𝑖2

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log 𝜆! = 𝛽D+ 𝛽ETime𝑖 + 𝛽FTemp𝑖



What makes GLMs linear?

Step 3: Specify linear predictor
• Linear predictor expresses our hypothesis about 

what influences our response variable
• In a GLM, all terms in the linear predictor are linear.
• Expanding on our Poisson example: 

• If we suspect things are nonlinear, we can include a 
polynomial:

This is still a GLM!

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log 𝜆! = 𝛽D+ 𝛽ETime𝑖 + 𝛽FTemp𝑖

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log 𝜆! = 𝛽D+𝛽ETime𝑖 + 𝛽FTemp𝑖 + 𝛽GTemp𝑖2



Getting to GAMs

Step 3: Specify linear predictor
• A GAM includes at least one nonlinear smoothing 

function or spline.
• To make our Poisson example a GAM:

• Always use ‘mgcv’ rather than default gam( )!
• There are tons of splines to choose from.

** A ‘regular’ additive model is just a GAM assuming a 
normal distribution with an identity link function.

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log 𝜆! = 𝛽D+ 𝛽ETime𝑖 + 𝑓(Temp𝑖)



Spline types in package ‘mgcv’

Thin plate spline (tp):  
- does not use knots
- can be used for multiple covariates (i.e., for interactions)
- computationally expensive

Cubic regression splines (cr):
- uses knots
- can only be used for single covariates
- computationally less expensive

Cyclic cubic regression splines (cc):
- A cr, but has the same start and end point (e.g. for 
modelling seasonality)



Spline types in package ‘mgcv’

Splines with shrinkage: allow for the complete 
removal of covariates during fitting if they are not 
needed
• Thin plate spline with shrinkage (ts):  
• Cubic regression splines  with shrinkage (cs):

Tensor products (te):
- another alternative if you have multiple covariates with 
interactions
- Advantage = invariant to relative scaling of covariates

And more!
• Enter ?smooth.terms after loading the ‘mgcv’ 

library in R



Motivating example

Can we identify seasonal trends in yellowtail flounder 
bycatch in the sea scallop fishery to inform bycatch 
mitigation measures?

wildlife.state.nh.us/
fisheries.noaa.gov



Motivating example

Coonamessett Farm Foundation’s seasonal bycatch 
survey



Simplest possible model

What is the mean catch of YT per survey tow?
• # of YT per 30 minute tow

Remember our GLM fitting steps!
1. Specify distribution for response variable 
2. Specify link function 
3. Specify linear predictor 



Simplest possible model

What is the mean catch of YT per survey tow?

Remember our GLM fitting steps!
1. Specify distribution for response variable 

• Counts -> Poisson:

2. Specify link function 
• We’ll go with the canonical link function -> log link 

• (? family in R for others)
3. Specify linear predictor 

• Intercept only

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log(𝜆!) = 𝛽0

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)

What is the mean catch of YT per survey tow?
• # of YT per 30 minute tow



Fitting in R

Using the glm( ) command:
> glm0 = glm(catch~1,data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log(𝜆!) = 𝛽0

Our model: 



Fitting in R

Using the gam( ) command in package ‘mgcv’:
> m0 = gam(catch~1,data=dat2,family=poisson(link="log"))



That was pretty boring…

There are very few situations where an intercept-only 
model will be informative (except as a baseline for 
model selection).



Specifying the linear predictor

We might expect that bycatch rates vary seasonally due to YT 
movements or factors impacting their response time (e.g. 
water temperature).



Specifying the linear predictor

A logical first step might be to include month as a factor (i.e. 
a categorical variable).
> m1 = gam(catch~as.factor(Month),data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log(𝜆!) = 𝛽0 +𝛽i,Monthi

Our model is 
now: 



Interpretation of results

A logical first step might be to include month as a factor (i.e. 
a categorical variable).
> m1 = gam(catch~as.factor(Month),data=dat2,family=poisson(link="log"))

Interpretation:
• To predict value in each 

month, add coefficient 
to the intercept
• Intercept 

corresponds to 
January 

• Explained more of the 
observed variation 
than the intercept-only 
model.



Interpretation of results

A logical first step might be to include month as a factor (i.e. 
a categorical variable).
> m1 = gam(catch~as.factor(Month),data=dat2,family=poisson(link="log"))



Specifying a continuous, linear seasonal effect

Based on the boxplot, it might make sense to model YT catch 
as a linear function of month.
> m2 = gam(catch~Month,data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)
log(𝜆!) = 𝛽0 +𝛽1 Monthi

Our model is 
now: 



Predicted relationship



Predicted relationship

Zoomed in (and not plotting points for tows):



Predicted relationship

Not surprisingly, residual plot doesn’t look great, either:



What do we do when things aren’t linear?

Fit a polynomial: Many animals exhibit seasonal cycles –
maybe a 3rd order polynomial will do?
> m3 = gam(catch~poly(Month,3),data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆!
log 𝜆! = 𝛽0 +𝛽1Monthi +𝛽2Monthi

2 + 𝛽3Monthi
3

Our model is now: 



Predicted relationship



What if the nonlinear relationship is more complex?

Fit a generalized additive model: s( ) notation
> m4 = gam(catch~s(Month),data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆!
log 𝜆! = 𝛽0 + f( Monthi )

Our model is now: 



gam( ) optimizes smoothness selection for you

• Automatically determines the degrees of freedom for 
every section of the smoothing function

𝐶𝑉(𝜆) 	= 	
1
𝑛
*+,𝑌𝑖 −	𝑓𝜆

−𝑖1 (𝑋𝑖)3	4
2
	

𝑛

1=1

				 

* The -i means the ith observation was removed & λ is the amount of        
smoothing

• GCV is generalized cross validation & is a modified 
version of cross validation that finds an optimal 
parameter value based on cross validation.  

• A GCV (or UBRE) score will be included in the output 
– The lower the value, the better the fit (similar to 

AIC).
• Can also fit via maximum likelihood by specifying 

method=“ML” (recommended)



gam( ) optimizes smoothness selection for you
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Interpreting gam( ) output

Fit a generalized additive model: s( ) notation
> m4 = gam(catch~s(Month),data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆!
log 𝜆! = 𝛽0 + f( Monthi )

Our model is now: 



Fit a generalized additive model: s( ) notation
> m4 = gam(catch~s(Month),data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆!
log 𝜆! = 𝛽0 + f( Monthi )

Our model is now: 

Interpreting gam( ) output



Predicted relationship



Spline selection: you’ve got options!

Fit a generalized additive model: s( , bs = ) notation
> m5 = gam(catch~s(Month,bs=‘cc’),data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆!
log 𝜆! = 𝛽0 +f( Monthi )

Our model is now: 



Spline selection: you’ve got options!

Fit a generalized additive model: s( , bs = ) notation
> m5 = gam(catch~s(Month,bs=‘cc’),data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆!
log 𝜆! = 𝛽0 +f( Monthi )

Our model is still: 



Predicted relationship



Including interaction terms in a smoother

Fit a generalized additive model: s( , by = ) notation
> m6 = gam(catch~s(Month,by=Lat),data=dat2,family=poisson(link="log"))

𝑐!~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆!
log 𝜆! = 𝛽0 +f( Monthi ∗ La&tudei)

Our model is now: 



Predicted relationships



Model selection and validation

How do we assess fit?
• Significance testing (not my favorite):
• Add or remove explanatory variables based on F- or 

likelihood ratio tests 
• Do not use default R output p-values!

• Information theoretic approaches 
• Measure predictive ‘loss’
• Akaike Information Criteria (AIC)
• Need to be careful with edf – the debate rages on

• Best approach (for now): 
• Selection via AIC backed up with cross validation

• Model validation
• Inspect residual and other diagnostic plots carefully



Is all this wiggliness a good idea?



Words of caution

You may be tempted to use GAMs for everything 
(GAMania)
• Tendency to overfit data (i.e., be too wiggly), even when using 

penalized splines
• Can limit predictive usefulness

• A lot of times, a well formulated polynomial can do almost as 
good of a job fitting to the data

• Have more informative parameter estimates/greater 
predictive power

• Importance of model validation
• Inspect residual and other diagnostic plots carefully
• If we had time to do this, we would have discovered a lot of 

problems with our YT model.
• Use your biological intuition!



Coming back to our YT example



Extensions

Spatial models



Extensions

Spatiotemporal models – when response varies over space and 
time

Zero-inflated models – when response contains many zeros
• Probably appropriate for our YT example

Mixed effects models/hierarchical models – incredibly 
useful
• When observations are correlated
• Or when you are interested in a phenomena that is not directly 

observable, but can be inferred from your data
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Next week

2/28: Matrix Algebra Review

3/01: Lab 7 (writing your own functions)

3/02: Principal Components Analysis


