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Objectives

I Review need for resampling methods, common methods
I Present jackknifing, bootstrapping
I Present cross-validation
I Present permutation analysis



Why do we need to discuss resampling methods?

We want to address uncertainty associated with applying statistical
methods.

For some algorithms, we (or our software) can derive analytical
estimates of variance.

This is sometimes:
- not always possible
- biased

Resampling methods allow us to numerically obtain estimates of
variance for our model predictions

Also can be used to obtain statistical signficance

e.g. “there is only one test”



Resampling methods for measuring goodness of fit

Goodness of fit measures (RSS, likelihood) are typically calculated
on all the data.

i.e. our measure of predictive ability is based on the data used to
train the model.

Predictive ability should really be based on how well a model does
at predicting data it has never seen before.

“Out of sample prediction”

Cross-validation involves the use of resampling methods to obtain a
GOF measure based on out of sample predictive ability.



Why use resampling?

Standard statistical tests assume data are collected in a way that
matches a particular statistical distribution.

Very often data and/or estimators are complicated, and standard
formulae simply don’t apply.

Resampling can be used on any kind of data, and any kind of
estimator, to test any hypothesis.

Applications include:
– Estimating the precision of statistics using jackknifing (excluding
data) or bootstrapping (drawing randomly with replacement).
– Validating methods using random subsets of data
(cross-validation).
– Permutation tests that use resampling to test for significance.
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Mean life expectancy example

What is the confidence interval for the average life expectancy
among countries in 2007 from the gapminder data? Mean of
gapminder countries:
nrow(gapminder |> filter(year == 2007))

## [1] 142
gapminder |>

filter(year == 2007) |>
summarize(avg_lifeExp = mean(lifeExp))

## # A tibble: 1 x 1
## avg_lifeExp
## <dbl>
## 1 67.0
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Mean life expectancy example

What if we only had enough money to sample 20 countries? Mean
of 20 countries:
set.seed(1138)
gap_sample <- gapminder |>

filter(year == 2007) |>
slice_sample(n = 20, replace = FALSE)

summarize(gap_sample, avg_lifeExp = mean(lifeExp))

## # A tibble: 1 x 1
## avg_lifeExp
## <dbl>
## 1 66.6



Mean life expectancy example

To estimate the variability of our estimate for the mean, we can:
- repeatedly draw different samples from our sampled countries,
- compute the mean life expectancy from those samples,
- summarize the distribution of estimates for the mean,
- calculate percentiles of this distribution.





Mean life expectancy from 20 countries
gapminder |>

filter(year == 2007) |>
rep_sample_n(size = 20)

## # A tibble: 20 x 7
## # Groups: replicate [1]
## replicate country continent year lifeExp pop gdpPercap
## <int> <fct> <fct> <int> <dbl> <int> <dbl>
## 1 1 Serbia Europe 2007 74.0 10150265 9787.
## 2 1 Burundi Africa 2007 49.6 8390505 430.
## 3 1 Ireland Europe 2007 78.9 4109086 40676.
## 4 1 Guinea Africa 2007 56.0 9947814 943.
## 5 1 Israel Asia 2007 80.7 6426679 25523.
## 6 1 Romania Europe 2007 72.5 22276056 10808.
## 7 1 Cameroon Africa 2007 50.4 17696293 2042.
## 8 1 South Africa Africa 2007 49.3 43997828 9270.
## 9 1 Ghana Africa 2007 60.0 22873338 1328.
## 10 1 Kenya Africa 2007 54.1 35610177 1463.
## 11 1 Benin Africa 2007 56.7 8078314 1441.
## 12 1 Cambodia Asia 2007 59.7 14131858 1714.
## 13 1 Canada Americas 2007 80.7 33390141 36319.
## 14 1 China Asia 2007 73.0 1318683096 4959.
## 15 1 Slovak Republic Europe 2007 74.7 5447502 18678.
## 16 1 Mauritania Africa 2007 64.2 3270065 1803.
## 17 1 Paraguay Americas 2007 71.8 6667147 4173.
## 18 1 Japan Asia 2007 82.6 127467972 31656.
## 19 1 Pakistan Asia 2007 65.5 169270617 2606.
## 20 1 Sudan Africa 2007 58.6 42292929 2602.



Mean life expectancy from 20 countries

gapminder |>
filter(year == 2007) |>
rep_sample_n(size = 20) |>
summarize(avg_lifeExp = mean(lifeExp))

## # A tibble: 1 x 2
## replicate avg_lifeExp
## <int> <dbl>
## 1 1 72.6



24 replicates of 20 countries

gapminder |>
filter(year == 2007) |>
rep_sample_n(size = 20, reps = 24)

## # A tibble: 480 x 7
## # Groups: replicate [24]
## replicate country continent year lifeExp pop gdpPercap
## <int> <fct> <fct> <int> <dbl> <int> <dbl>
## 1 1 Australia Oceania 2007 81.2 20434176 34435.
## 2 1 Hong Kong, China Asia 2007 82.2 6980412 39725.
## 3 1 Tunisia Africa 2007 73.9 10276158 7093.
## 4 1 Turkey Europe 2007 71.8 71158647 8458.
## 5 1 Pakistan Asia 2007 65.5 169270617 2606.
## 6 1 Germany Europe 2007 79.4 82400996 32170.
## 7 1 Equatorial Guinea Africa 2007 51.6 551201 12154.
## 8 1 Malaysia Asia 2007 74.2 24821286 12452.
## 9 1 Czech Republic Europe 2007 76.5 10228744 22833.
## 10 1 Sri Lanka Asia 2007 72.4 20378239 3970.
## # ... with 470 more rows



24 replicates of 20 countries

gapminder |>
filter(year == 2007) |>
rep_sample_n(size = 20, reps = 24) |>
summarize(avg_lifeExp = mean(lifeExp))

## # A tibble: 24 x 2
## replicate avg_lifeExp
## <int> <dbl>
## 1 1 63.3
## 2 2 64.7
## 3 3 66.1
## 4 4 66.2
## 5 5 69.1
## 6 6 64.1
## 7 7 63.5
## 8 8 63.9
## 9 9 66.4
## 10 10 63.5
## # ... with 14 more rows



Distribution of 24 estimates of the mean
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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Regression Example

To estimate the variability of a linear regression fit, we can:
- repeatedly draw different samples from the training data,
- fit a linear regression to each new sample,
- examine the extent to which the resulting fits differ.

We obtain information not available from fitting the model only
once using the original training sample.

Resampling approaches can be computationally expensive.
- fitting the same statistical method multiple times.
- these days, requirements generally not prohibitive.



Resampling methods discussed today

1. Jackknifing
2. Bootstrapping
3. Cross-validation
4. Permutation tests



Jackknifing

(Quenouille 1949, Tukey 1958)

Used to estimate:
- bias in sample statistics,
filter(year == 2007) |> rep_sample_ filter(year == 2007) |>
rep_sample_e data x1, x2, , . . . , xn and we are computing the
mean.

Systematically leave out one observation at a time and recompute
the statistic.
mean(x2, . . . , xn); mean(x1, x3, . . . , xn); mean(x1, x2, x4, . . . , xn)

If there is small-sample bias, this will appear, and can be used to
correct the variance of the statistic.



Jackknifing

There are additional versions where > 1 data points are removed in
each sample.

Variance estimation

Var(jacknife) = n−1
n

n∑
i=1

(θ̂i − θ̂(.))2

Bias estimation and correction
ˆBiasθ = nθ̂(.) − (n − 1)θ̄(jk)

Systematic - estimates from jacknifing will always be the same.

More reading: http://www.physics.utah.edu//~detar/phycs6730/h
andouts/jackknife/jackknife/

http://www.physics.utah.edu//~detar/phycs6730/handouts/jackknife/jackknife/
http://www.physics.utah.edu//~detar/phycs6730/handouts/jackknife/jackknife/


Bootstrapping
Widely applicable and extremely powerful statistical tool.

Used to quantify the uncertainty associated with a given estimator
or statistical learning method.

Technique allows estimation of the sampling distribution of almost
any statistic using random sampling methods.

Practice of estimating properties of an estimator (such as its
variance) by measuring those properties when sampling from an
approximating distribution.

Standard choice for an approximating distribution is the empirical
distribution function of the observed data.

When a set of observations can be assumed to be from an
independent and identically distributed population, this can be
implemented by constructing a number of resamples with
replacement of the observed dataset (and of equal size to the
observed dataset).



Bootstrapping
Based on assumption that data in samples are independent
observations from a population.

If sample size is large enough, then sample should describe
population.

Variance associated with resampling (with replacement) from
sample should reflect variance in population.

I Have some data x1, x2, , . . . , xn and we are computing a
statistic t.

I Randomly draw n values from the data with replacement (same
value can be drawn multiple times).

I Calculate statistic from new random pseudo-data.
I Repeat a large number of times to obtain the distribution:

t1, t2, . . . , tn.
I Resulting distribution is the bootstrap sampling distribution.
I Compute standard deviation and 95% confidence intervals from

this. Finished.



Bootstrapping example, mean life expectancy
use functionality from infer package
1 resample:
gap_resample <- gapminder |>

filter(year == 2007) |>
specify(response = lifeExp) |>
generate(reps = 1)

## Setting `type = "bootstrap"` in `generate()`.
calculate(gap_resample, stat = "mean")

## Response: lifeExp (numeric)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 66.2
gap_resample

## Response: lifeExp (numeric)
## # A tibble: 142 x 2
## # Groups: replicate [1]
## replicate lifeExp
## <int> <dbl>
## 1 1 59.4
## 2 1 71.9
## 3 1 60.0
## 4 1 75.6
## 5 1 76.2
## 6 1 70.2
## 7 1 51.5
## 8 1 63.1
## 9 1 78.6
## 10 1 42.7
## # ... with 132 more rows



Bootstrapping example, mean life expectancy
Many resamples:
gap_resamples <- gapminder |>

filter(year == 2007) |>
specify(response = lifeExp) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "mean")

gap_resamples

## Response: lifeExp (numeric)
## # A tibble: 1,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 67.7
## 2 2 67.6
## 3 3 66.0
## 4 4 67.7
## 5 5 66.5
## 6 6 68.8
## 7 7 67.7
## 8 8 66.3
## 9 9 65.3
## 10 10 66.7
## # ... with 990 more rows



visualize(gap_resamples,
xlab = "mean life expectancy")
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Regression example

slope_bootstrap <- Auto |>
specify(formula = mpg ~ horsepower) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "slope")

percentile_ci <- slope_bootstrap |>
get_confidence_interval(type = "percentile",

level = 0.95)
percentile_ci
# A tibble: 1 x 2
lower_ci upper_ci

<dbl> <dbl>
1 -0.173 -0.144



visualize(slope_bootstrap)
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Case bootstrapping using boot()

In package boot()

boot() is very powerful, can be used to do (almost) all kinds of bootstraps.
However, typically requires you to still write functions.

Good description of boot() function in Fox (2002).
> boot(data, #data, can be vector or dataframe
+ statistic, # function of interest
+ R, #number of bootstraps
+ sim = "ordinary", #type of simulation
+ stype = c("i", "f", "w"), #flag for 2nd arg
+ strata = rep(1,n), #bootstrap within strata
+ weights = NULL, #for importance sampling
+ ran.gen = function(d, p) d, #for parametric boots
+ mle = NULL,
+ parallel = c("no", "multicore", "snow"),
+ ncpus = getOption("boot.ncpus", 1L),
+ cl = NULL)



When is bootstrapping useful?

I theoretical distribution of a statistic of interest is complicated
or unknown.

I sample size is insufficient for straightforward statistical
inference.

I for power analysis with a small pilot sample dataset available.

Bootstrap distribution will not always converge to the same limit as
the sample mean.
- confidence intervals on the basis of Monte Carlo simulation of the
bootstrap could be misleading.

“Unless one is reasonably sure that the underlying distribution is not
heavy tailed, one should hesitate to use the naive bootstrap”.
(Athreya)



More on bootstrapping

Advantages
- simple
- can be applied to any statistical technique.
- asymptotically more accurate than standard intervals obtained
using sample variance and normality assumptions.

Disadvantages
- does not generate finite-sample guarantees
- apparent simplicity can conceal the fact that important
assumptions are being made (e.g. independence of samples)



Types of bootstrap
I Case resampling (naive or empirical bootstrap)

Resample individual observations
Acceptable for univariate problems
Size of resample equal to original data set
‘Exact’ version involves enumerating every possible resample of
the dataset - computationally expensive.

I Bayesian bootstrap
new datasets obtained by reweighting initial data

I Smooth bootstrap
small amount of random noise added onto each resampled
observation.
equivalent to sampling from kernel density estimate of data.

I Parametric bootstrap
Small samples - random numbers drawn from the fitted model.

I Resampling residuals



Bias-corrected and accelerated (BCA)
Simple bootstrapping can produce biased and skewed estimates of
confidence intervals.

Ad-hoc solutions:
- find some monotone transformation that makes data approximately
normal
- get lucky: identify the exact distribution of data or some
transformation thereof
HARD!

“You can pull yourself up by your bootstraps and you don’t need
anything else”
(Efron)

To correct for this, “bias-corrected and accelerated” confidence
intervals from bootstrapping.
Efron (1987) http://dx.doi.org/10.1080/01621459.1987.10478410

Can use functions boot() and boot.ci() from package(boot).

http://dx.doi.org/10.1080/01621459.1987.10478410


Resampling residuals

Common form of bootstrapping involves developing pseudo-data
sets by resampling residuals (with replacement) and adding these to
the model predictions.

yU
i = ŷi + εj ; εj = yj − ŷj

yU
i is the ith datum in pseudo data set U
ŷi is the model prediction for observation i
j is selected at random from 1:n.

Retains information in the explanatory variables.
Which residuals to resample? Raw residuals, Studentized residuals.
Often makes little difference and easy to run both and compare.



More types of Bootstrap

I Gaussian process regression bootstrap
Good for data that are correlated (e.g. in time)
Straightforward bootstrapping destroys inherent correlations.

I Wild bootstrap
Suitable when model exhibits heteroskedasticity.
Leave regressors at sample value, resample response variable
based on residuals, but multiply residuals by random variable.

I Block bootstrap
used for correlated data/errors
resamples blocks of data



Comparisons with other methods

Bootstrap gives different results when repeated on same data,
whereas jackknife gives exactly the same result each time.

Subsampling is an alternative method for approximating the
sampling distribution of an estimator.
Two key differences to bootstrap:
- resample size is smaller than the sample size
- resampling done without replacement.



Cross-validation

Difference between test error rate and the training error rate.

Randomly divide the data into two sets.

Resampling comes in by repeating this division multiple times, to
obtain slightly different values for goodness-of-fit.

Cross-validation methods therefore differ by the approach/algorithm
taken to perform this resampling / calculation of the test error rate.



Validation set approach
Split data into training set and a validation (or hold-out) set.

Fit model to training set, fitted model used to predict the responses for
the observations in the validation set.

Resulting validation set error rate (e.g. MSE for quantitative response) is
an estimate of the test error rate.
> set.seed(66)
> train <- sample(392,196)
> lm.fit <- lm(mpg ~ horsepower, data=Auto, subset=train)
> mean((Auto$mpg - predict(lm.fit, Auto))[-train]ˆ2)
[1] 26.17334
> lm.fit2 <- lm(mpg ~ poly(horsepower, 2), data=Auto,
+ subset=train)
> mean((Auto$mpg - predict(lm.fit2, Auto))[-train]ˆ2)
[1] 22.0495
> lm.fit3 <- lm(mpg ~ poly(horsepower, 3), data=Auto,
+ subset=train)
> mean((Auto$mpg - predict(lm.fit3, Auto))[-train]ˆ2)
[1] 23.30051



Validation set approach

Conceptually simple and easy to implement.

Two potential drawbacks:

1. Validation estimates of the test error rate can be highly
variable, depends on which observations are included in training
set and which included in the validation set.

2. Only a subset of the observations are used to fit the model.
Statistical methods perform worse when trained on fewer
observations. Validation set error rate may overestimate test
error rate for a model fit to the entire data set.

Cross-validation refines the validation set approach to address these
issues.



Leave One Out Cross-Validation (LOOCV)

Fit the model n times to n − 1 training observations.

Do this systematically such that each observation is predicted
out-of-sample.

The MSE is approximately unbiased estimate for the test error.

The LOOCV is the average MSE of the n test error estimates.

CV(n) = 1
n

n∑
i=1

MSEi



LOOCV



Cross-Validation of GLM, LOOCV
Make use of cv.glm in boot.
> library(boot)
> glm.fit <- glm(mpg~horsepower,data=Auto)
> coef(glm.fit)
(Intercept) horsepower
39.9358610 -0.1578447

> cv.err <- cv.glm(Auto,glm.fit)
> cv.err$delta
[1] 24.23151 24.23114

> cv.error <- map(1:5,
+ ~cv.glm(Auto,
+ glm(mpg~poly(horsepower,.x),data = Auto))$delta[1])
> cv.error
[[1]]
[1] 24.23151

[[2]]
[1] 19.24821

[[3]]
[1] 19.33498

[[4]]
[1] 19.42443

[[5]]
[1] 19.03321



More on LOOCV

Less biased than validation set approach.

Each model is fit using training sets that contain nearly almost all
the data.
- tends not to overestimate the test error rate as much as validation
set approach.

LOOCV always returns same results: no randomness in the
training/validation set splits.

However,
LOOCV can be expensive/time-consuming to implement:
- if n is large, or
- each individual model is slow to fit.



More on LOOCV
With least squares linear or polynomial regression, cost of LOOCV
same as that of single model fit!

CV(n) = 1
n

n∑
i=1

(yi − ŷi
1− hi

)2

where ŷi is the _i_th fitted value from the original least squares fit
hi is the leverage.

Same as ordinary MSE, except ith residual is divided by 1− hi .
1/n ≤ hi ≤ 1 reflects the amount that an observation influences its
own fit.

LOOCV very general, can be used with any kind of predictive
modeling.

Sadly, the magic formula does not hold in general, and the model
has to be refit n times.



k-Fold Cross Validation
I Randomly divide observations into k groups (folds) of equal

size.

I Treat 1st fold as a validation set,

I Fit the method on the remaining k − 1 folds.

I Compute MSE1 on the observations in the held-out fold.

I Repeat for each fold.

I Gives k estimates of the test error, MSE1,MSE2, . . . ,MSEk .

I Average these to obtain the k-fold CV estimate:

CV(k) = 1
k

k∑
i=1

MSEi

(LOOCV a special case when k = n)

In practice perform either k = 5 or k = 10.





Comparing 10-fold CV with LOOCV



k-Fold Cross-Validation

Use cv.glm() with argument K=k to perform k-fold
cross-validation.
set.seed(17)
cv_error <- expand.grid(poly = 1:10,

sim = 1:10) |>
mutate(cv = map_dbl(poly,

~cv.glm(Auto,
glm(mpg~poly(horsepower,.x),data=Auto),
K=10)$delta[1]))

Setting K=n replicates LOOCV.
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Cross-Validation

Goal might be to determine how well a given statistical learning
procedure can be expected to perform on independent data.
- the actual estimate of the test MSE is of interest.

Other times we are interested only in the location of the minimum
point in the estimated test MSE curve.
- might be performing cross-validation on a number of statistical
learning methods,
- or on a single method using different levels of flexibility.
- want to identify the method that results in the lowest test error.

Here, location of the minimum point in the estimated test MSE
curve is important, but not actual value of the estimated test MSE.



Cross-Validation

k-fold CV often gives more accurate estimates of the test error rate
than LOOCV.

Bias reduction - LOOCV should be preferred to k-fold CV.

BUT also need to consider variance of procedure.
LOOCV has higher variance than k-fold CV with k < n.

LOOCV averages output of n models, each trained on almost same
data.
- outputs are highly (positively) correlated.

k-fold CV averages output of k models that are less correlated with
each other.
- overlap between training data sets is lower.

Test error estimates from LOOCV tends to have higher variance
than from k-fold CV.



Cross-validation on classification

Note that we can also perform cross-validation on classification
methods.

CV(n) = 1
n

n∑
i=1

Erri

Erri = I(yi 6= ŷi )





Permutation test
Type of statistical significance test where the distribution of the test
statistic under the null hypothesis is obtained by calculating all
possible values of the test statistic under rearrangements of the
labels on the observed data points.

e.g. non-parametric t-test

Is the mean of group A larger than the mean of group B?
Assume sample means x̄A and x̄B, sample sizes nA & nB.
Test statistic is Tobs = x̄A − x̄B

Method: - pool all observations for A and B.
- Find every possible permutation of dividing the pool into two
groups Ai and Bi of size nA & nB.
- For each permutation calculate Ti = x̄Ai − x̄Bi

- The set T1,T2, ... is the distribution of possible differences under
the null hypothesis that group label does not matter.
- p-value is proportion of Ti values greater than Tobs .



Permutation tests

Advantages
Exist for any statistic, regardless of whether its distribution is known.
Can be used for unbalanced designs.
Combine dependent tests on mixtures of nominal, ordinal, and
metric data.

Disadvantages
Assumes observations are exchangeable under the null hypothesis.
Tests of difference in location require equal variance.
- permutation t-test shares same weakness as classical Student’s
t-test.



Monte Carlo testing

I The number of permutations rises too rapidly to calculate all
directly.

I Instead, randomly choose N (large) permutations and use this
as the reference distribution.

I called an approximate permutation test, Monte Carlo
permutation test, random permutation test, randomization test,
etc.



Why to apply these methods

Cross-validation can be used to estimate the test error associated
with a given statistical learning method to evaluate its performance,
or to select the appropriate level of flexibility.

I Process of evaluating a model’s performance is known as model
assessment.

I Process of selecting the proper level of flexibility for a model is
known as assessment model selection.

The bootstrap is used in several contexts, most commonly to
provide a measure of accuracy of a parameter estimate or a given
selection of a statistical learning method.



Tomorrow. . . Lab Exercises on Resampling methods

I Thu 2/16: nonlinear modeling, splines


