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This Week. . .

1/31: Lab 3, linear modeling
2/01: linear models, cod catch rates
2/02: Likelihood



Objectives

I Revisit probability
I Present Likelihood
I Statistical inference based on maximum likelihood



Probability

Previously: probability & common probability distributions

Dicsussed these in terms of PDFs, f (x) = P(X = x)

I Probability distribution function (discrete)
I Probability density function (continuous)

PDFs are a function of parameters.

We are frequently interested in estimating the values for parameters.



Example: Poisson λ = 3

P(X = x) = e−λλx
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Often used for count data



Methods of estimation

I Method of Moments
I Least Squares
I Maximum Likelihood

Other techniques:
minimum chi-square, minimum mean-square error estimators, finite
sampling theory, and Bayes procedures.

Method of Moments: equate sample results with their expected
values under a sampling model.
Expected value(s) in turn is a function of the parameter(s) of
interest in estimating.



Likelihood function

Common problem:

Given some data, and a model of interest, find the one PDF among
all the probability densities that the model prescribes, that is most
likely to have produced the data.
inverse problem

i.e. Try to find values for parameters such that the model for P(X )
yields numbers that are as close to the data as possible.

We choose parameter estimates to maximize the likelihood
function.

In linear regression problem, least squares approach is a special case
of maximum likelihood.

Minimize distance between model and data.
e.g. sum of squares in linear regression problem.



Likelihood function

Define the likelihood function by reversing roles of data vector
and the parameter vector.

L(θ; y) = f(y|θi)

Likelihood functions is defined as the pdf of some given data over
the alternative values for the parameters.

Sometimes referred to as: likelihood of a parameter given the data
(because we know the data).



Example: Likelihood function for poisson
Counting river herring at Jenny Grist Mill, Plymouth MA.

We observe at the fish ladder for 1 hour and count 3 herring.

(J.S. Conn)



Example: Likelihood function for poisson

To define the likelihood function we evaluate P(X = 3|λ) for all
values of λ.

P(X=x| λ =3)
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Maximum likelihood estimation
What is the arrival rate of herring per hour?

We find the value of the parameter λ that maximizes the likelihood
function.

L (3 | λ )
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Maximum likelihood estimation

Maximum of a function f (x)?
- 1st derivative is equal to 0
- Function is convex around maximum (2nd derivative is negative)

We often work with the log-likelihood (lnL).

Procedure:
- Differentiate log-likelihood with respect to the parameters,
- Set 1st derivative equal to zero,
- Solve for the parameters to find the MLEs.



Maximum likelihood estimation: Poisson

L(λ; y) = e−λλy

y !

ln(L(λ; y)) =
dlnL
dλ =



Maximum likelihood estimation: Poisson

L(λ; y) = e−λλy

y !

ln(L(λ; y)) = −λ+ y lnλ− ln(y !)
dlnL
dλ =



Maximum likelihood estimation: Poisson

L(λ; y) = e−λλy

y !

ln(L(λ; y)) = −λ+ y lnλ− ln(y !)
dlnL
dλ = −1 + y

λ



Maximum likelihood estimation

Our example for poisson:

Set dlnL
dλ = 0, and solve for λ with y = 3.

0 = −1 + y
λ

MLE for λ = 3



Maximum likelihood estimation
Our example for poisson:

Set dlnL
dλ = 0, and solve for λ with y = 3.

MLE for λ = 3.

Say we had n independent hourly observations of herring arrival:

Recall for independent events:

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1) · P(A2) · P(A3) . . .

L(λ; y) =
n∏

i=1

e−λλyi

yi !

ln(L(λ; y)) = −nλ+ lnλ
n∑

i=1
y −

n∑
i=1

ln(y !)



Maximum likelihood estimation

Principle developed by R.A. Fisher (1920s)

MLE estimates need not exist nor be unique.

The likelihood equation represents a necessary condition for the
existence of an MLE estimate.

Not usually possible to obtain analytic form solutions for the MLE
estimates.

Particularly when the model involves many parameters and PDF is
highly non-linear.

In which case:
MLE estimate sought numerically using nonlinear optimization
algorithms.



Estimating variance for your parameters

Fisher showed that the negative inverse of the 2nd partial derivative
of the log-likelihood function (the negative inverse of the Hessian),
evaluated at the MLE, is the MLE of the variance of the parameter.

Var(θ̂) =
[
−
(
∂2lnL(θ; y)

∂θ2

)]−1

θ=θ̂

Returning to our herring example with 1 observation of 3 fish in an
hour:

Var(λ̂) =
[
−
(−y
λ2

)]−1

λ=λ̂
=
[
−
(−3
32

)]−1
= 3

So with only 1 observation, our variance is pretty high.
(indeed, the same as the variance of the Poisson process!)



Relationship to least squares estimation

Least squares assumptions:

1. yi ’s are pair-wise uncorrelated
2. variance constant, σ2

3. Expected value of yi , E [yi ] = β0 + β1xi

No statistical or distributional assumptions required for parameter
estimates.

Maximum Likelihood technique of least squares assumptions:

1. yi ’s follow the model yi = β0 + β1xi + εi
2. εi ∼ N(0, σ2)
3. σ2 known or unknown parameter



Regression example, normal Likelihood
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Regression example, normal Likelihood

dlnL
dβ0

= − 1
σ2

n∑
i=1

(yi − (β0 + β1xi ))

dlnL
dβ1

= − 1
σ2

n∑
i=1

(yi − (β0 + β1xi ))xi

Let X̄ =
∑

xi/n, Ȳ =
∑

xi/n, X 2 =
∑

x2
i /n, XY =

∑
xiyi/n

Then

β0 + β1X̄ = Ȳ and β0X̄ + β1X 2 = XY

Solving for β1 & β0 gives

β1 = XY−X̄ Ȳ
X2−X̄2 , and β0 = Ȳ − β1X̄

which are the same as the least square estimates



Maximum likelihood and statistical testing

So far, we calculated the ‘best’ estimate for the parameters (MLEs).

We are often also interested in evidence for 1 hypothesis over
another.
i.e. to compare the fits of different models.

For nested models, the likelihood ratio gives the weight of
evidence for one model over another.

herring example: How less likely is it that we counted 3 fish when
the mean arrival rate is 2?
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Likelihood ratios

Herring example: How less likely is it that we counted 3 fish when
the mean arrival rate is 2?

Λ(x) = L(y |λ = 2)
L(y |λ = 3)

= P(y = 3|λ = 2)
P(y = 3|λ = 3)

= 0.180
0.224 = 0.805



Likelihood ratios

Statistical testing

Wilks showed that as n→∞, −2ln(Λ) is asymptotically chi-squared
distributed (χ2) with degrees of freedom equal to difference in
dimensionality between the models.

−2ln(Λ) = −2(lnL(y |λ = 2)− lnL(y |λ = 3))
= −2(ln(0.180)− ln(0.224))
= 0.433

Critical value of χ2 with 1 d.f. at α = 0.05 is 3.84

0.433 < 3.84 so we would not reject the hypothesis that the data
were generated by a poisson with λ of 2, even though it is less likely
than the MLE of 3.



Likelihood profiles
We can compute a 95% confidence interval for MLEs using the
likelihood profile

An 100− x% confidence interval for p parameters is determined by
finding the values for the parameter(s) for which:

−(lnL− lnLMLE ) = 1
2χ

2(p, x/100)

where lnLMLE is the log-likelihood corresponding to the maximum
likelihood estimates.

If the number of parameters is > 1 then we profile the likelihood
over a parameter using the MLEs for the other parameters given the
profiled values for the parameter of interest.

i.e. re-fit the model to the data for each of the profiled values for
the parameter of interest.
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Significant at 5% level when −2lnΛ > 3.84

i.e. 95% CI are values for the parameter where the nLL is 1.92 units
from the MLE.



Properties of maximum likelihood estimators

1. For the estimator of θ, the

MLE ∼ N

θ, −1
E
[

δ2lnL
δθ2

]


2. MLEs are solutions to the equations

δL(θ)
δθ

set= 0

which satisfy the relationship

δ2L(x |θ)
δ2θ

< 0



3. Invariance property of MLE.
Let θ̂ be the MLE of θ, then the MLE of the function τ(θ) is
τ(θ̂).

4. The MLE of θ is asymptotically a Unique Minimum Variance
Unbiased Estimator (UMVUE).
(asymptotically efficient with minimum variances)

σ2
θ̂

= 1

E
[(

δlnL
δθ

)2
] = −1

E
[

δ2lnL
δθ2

]



Next Time. . .

2/07: Extending the linear model (GLMs)
2/08: Lab 4 (data wrangling, model summaries)
2/09: GLMs 2 (Logistic regression)


