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This Week. . .

1/17: Introduction, Statistical Rethinking
1/18: Lab 1
1/19: Probability review



Objectives

I Review probability laws
I Review definitions of expected value and variance of random

variables
I Present common probability distributions



Why does variability matter?
Variability affects any ecological system.

Noise affects ecological data in two ways:
- measurement error
- process noise

Measurement error is variability in our measurements.
- leads to large confidence intervals and low power

Process noise (process error), variability in the system.
- demographic stochasticity
- environmental stochasticity

We are interested in understanding patterns in our data.
- use probability to describe relationships between processes and
data.

Often assume that our data is generated by some stochastic process
whose expected value is a function of covariates we are interested in.



Basic probability theory

The sample space is the set of all possible outcomes that could
occur.

e.g. for a regular six-sided die

s{1, 2, 3, 4, 5, 6}

Probability of an event A is the frequency with which that event
occurs.

e.g.
P(1) = 1/6



Laws of Probability

1. Law of total probability
The probabilities of all possible outcomes of an observation or
experiment add to 1.0

P(heads) + P(tails) = 1.0

2. Probability of A or B, or P(A ∪ B)

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

3. Mutually exclusive vs. independent events

I two mutually exlusive events cannot be independent

I mutually exclusive =⇒ P(A ∩ B) = 0

I independence =⇒ P(A ∩ B) = P(A) · P(B) 6= 0



Laws of Probability

4. General multiplication rule

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1) · P(A2|A1) · P(A3|A1,A2) . . .

5. Conditional probability

P(A|B), is the probability that A happens if we know or assume B
happens.

P(A|B) = P(A ∩ B)
P(B)



Conditional probability leads to Bayes’ rule

P(A|B) = P(A ∩ B)
P(B)

P(A ∩ B) = P(B ∩ A) = P(B|A) · P(A)

P(A|B) = P(B|A) · P(A)
P(B)

This is mostly termed with A being the model (hypothesis) and B
being the data.
i.e. what is the probability of a hypothesis given the data.

P(H|D) = P(D|H) · P(H)
P(D)

with P(D) =
∑

P(D|H) · P(H)



Random Variables

A random variable is a numerical valued function defined over a
sample space.

The probability distribution describes how the frequency of
occurrence varies across the sample space.

For discrete variables, characterized by f (x),
- the probability distribution function (discrete variables)

f (x) = Prob(X = x)

(for continuous variables, f (x) is the probability density function)

Both types of variables are also described by the cumulative
distribution function, F (x)

F (x) = P(X ≤ x)
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Expected Value of Random Variable X

Discrete random variables

µ = E (X ) =
∞∑

i=0
xiP(X = xi )

Continuous random variables

µ = E (X ) =
∫ ∞
−∞

xf (x)dx



Variance of a Random Variable X , E [(X − µ)2]
Discrete random variables

Var(X ) =
∞∑

i=0
(xi − E (xi ))2 P(X = xi )

Continuous random variables

Var(X ) =
∫ ∞
−∞

(xi − E (xi ))2f (x)dx

In general
Var(X ) = E (X 2)− (E (X ))2 = E ((X − µ)2)

Variances are additive.

Var(X ± Y ) = Var(X ) + Var(Y )± 2Cov(X ,Y )

The standard deviation of a distribution is
√
Var

The coefficient of variation (CV) is
√
Var/µ



Summary of probability distributions



Binomial

Describes the number of successes from a fixed number of trials.
Two possible outcomes on each trial, success or failure.
Probability of success is the same in each trial.

Range: discrete, 0 ≤ x ≤ N
Distribution: (

N
x

)
px (1− p)N−x

R: dbinom pbinom qbinom rbinom
Parameters:
- p [real, 0-1], probability of success [prob]
- N [positive integer], number of trials [size]
Mean: Np
Variance: Np(1− p)
CV: sqrt(1− p)/(Np)
Conjugate prior: Beta
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Multinomial
Extension of binomial trials to three or more possible outcomes.
X = (X1,X2, . . . ,Xk)

Range: discrete, 0 ≤ xi ≤ N
Distribution:

P(X1 = x1,X2 = x2, . . . ,Xk = xk) =
(

N
x1, x2, . . . , xk

) k∏
i=1

pxi
i

R: dbinom pbinom qbinom rbinom
Parameters:

- pi [real, 0-1],
k∑

i=1
pi = 1

- N [positive integer], number of samples

E (Xi ) = Npi
Var(Xi ) = Npi (1− pi )
Cov(Xi ,Xj) = −Npipj , i 6= j



Poisson
Describes events which occur randomly and independently in time.

Limit of a binomial distribution in which:
N →∞, p → 0 while Np = µ is fixed.

Distribution of “rare events” (i.e., p → 0).

Range: discrete (0 ≤ x)
Distribution:

e−λλn

n! ore
−rt(rt)n

n!
R: dpois, ppois, qpois, rpois
Parameters: λ (real, positive), expected number per sample
[lambda] or r (real, positive), expected number per unit effort, area,
time, etc. (arrival rate)
Mean: λ (or rt)
Variance: λ (or rt)
CV : 1/

√
λ (or 1/

√
rt)

Conjugate prior: Gamma
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Negative Binomial
For binomial trials, the number of failures before n successes.

In ecology, most often used because it is discrete like the Poisson
but the variance can be greater than the mean (overdispersed).

Range: discrete, x ≥ 0
Distribution:

P(X = x) = (n + x − 1)!
(n − 1!)x ! pn(1− p)x

or Γ(k + x)
Γ(k)x ! (k/(k + µ))k(µ/(k + µ))x

Parameters:
p (0 < p < 1) probability per trial [prob]
or µ (real, positive) expected number of counts [mu]
n (positive integer) number of successes awaited [size]
or k (real, positive), overdispersion parameter [size]
(= shape parameter of underlying heterogeneity)



Negative Binomial

R: dnbinom, pnbinom, qnbinom, rnbinom
Mean: µ = n(1− p)/p
Variance: µ+ µ2/k = n(1− p)/p2

CV:
√

(1+µ/k)
µ = 1/

√
n(1− p)

Conjugate prior: No simple conjugate prior (Bradlow et al. 2002)

To use the ‘ecology’ parameterization in R you must name mu
explicitly.

The negative binomial is also the result of a Poisson sampling
process where λ is Gamma-distributed.



Negative Binomial (µ = 2 all cases)

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

P
ro

ba
bi

lit
y

k = 10

k = 1

k = 0.1



Continuous Probability Distributions



Uniform distribution

Constant probability across a range with limits a and b

Standard uniform, U(0, 1), frequently used as building block.

Range: a ≤ x ≤ b
Distribution: 1/(b − a)
R: dunif, punif, qunif, runif
Parameters: minimum (a) and maximum (b) limits (real)
[min, max]

Mean: (a + b)/2
Variance: (b − a)2/12
CV: (b − a)/((a + b)

√
3)



Uniform distribution
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Normal Distribution
Arises from adding things together.

Sum of a large number of independent samples from the same
distribution is approximately normal.

Limit of many distributions (binomial, Poisson, negative binomial,
Gamma).

Range: all real values
Distribution: 1√

2πσ exp
(
− (x−µ)2

2σ2

)
R: dnorm, pnorm, qnorm, rnorm
Parameters:
- µ (real), mean [mean]
- σ (real, positive), standard deviation [sd]
Mean: µ
Variance: σ2

CV: σ/µ
Conjugate prior: Normal (µ); Gamma (1/σ2)



Normal distribution
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Gamma
Distribution of waiting times until a certain number of events
occurs.

Continuous counterpart to the negative binomial.

Gamma is very useful. Continuous positive variable with large
variance and (possible) skew.

Range: positive real values
R: dgamma, pgamma, qgamma, rgamma
Distribution: 1

saΓ(a)x
a−1e−x/s

Parameters:
s (real, positive), scale: length per event [scale]
or r (real, positive), rate = 1/s; rate at which events occur [rate]
a (real, positive), shape: number of events [shape]
Mean: as or a/r
Variance: as2 or a/r2

CV: 1/
√
a



Gamma
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Beta

Continuous distribution related to the binomial.

Distribution of probability of success in a binomial trial with a − 1
successes and b − 1 failures.

Very useful in modeling probabilities or proportions.

Range: real, 0 to 1
R: dbeta, pbeta, qbeta, rbeta
Density: s Γ(a+b)

Γ(a)Γ(b)x
a−1(1− x)b−1

Parameters:
- a (real, positive), shape 1: number of successes +1 [shape1]
- b (real, positive), shape 2: number of failures +1 [shape2]
Mean: a/(a + b)
Mode: (a − 1)/(a + b − 2)
Variance: ab/((a + b)2)(a + b + 1)
CV:

√
(b/a)/(a + b + 1)
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Lognormal

Not a continuous analogue or limit of some discrete distribution.

Justification: as for normal, but for product of many iid variables.

Used in many situations where Gamma also fits, continuous,
positive distribution with long tail or variance > mean.

Range: positive real values
R: dlnorm, plnorm, qlnorm, rlnorm
Density: 1√

2πσx e
−(log x−µ)2/(2σ2)

Parameters:
- µ (real): mean of the logarithm [meanlog]
- σ (real): standard deviation of the logarithm [sdlog]
Mean: exp(µ+ σ2/2)
Variance: exp(2µ+ σ2)(exp(σ2)− 1)
CV:

√
exp(σ2)− 1 (≈ σ when σ < 1/2)



Lognormal
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Relationships among distributions



Other common distributions
Discrete
- Geometric (negative binomial with k = 1)
- Beta-binomial (binomial but with p being beta distributed)
- Hypergeometric (useful for sampling without replacement, finite
population)
- Multivariate hypergeometric (similar to the multinomial)

Continuous
- Exponential (distribution of waiting times for a single event)
- Pareto (quantity whose log is exponentially distributed, power
laws!)
- Chi square (distribution of a sum of squared standard normals)
- Student’s t (ratio of a standard normal and the square root of a
scaled chi square)
- F (ratio of two scaled chi-squares)
- Dirichlet (generalization of beta, for a vector that must sum to 1)
- Wishart (generalization of gamma, for a symmetric non-negative
definite matrix)



Delta Method

Calculating expected values and variances of (nonlinear) functions of
continuous (differentiable) random variables using Taylor series
expansion.



Delta Method

Calculating expected values and variances of (nonlinear) functions of
continuous (differentiable) random variables using Taylor series
expansion.

Let xi be a random variable with mean µi (i = 1, . . . , n). Given
some function g(x1, x2, . . . , xn), say, g

(x
∼
)
, then

1. E
(
g
(x
∼
)) .=

g
(µ
∼
)

+ 1
2

n∑
i=1

Var(Xi )
(
∂2

g
∂x2

i

)
|µ

+
∑
i<j

∑
Cov(xi , xj)

(
∂2

g
∂xi∂xj

)
|µ



2. Var
(
g
(x
∼
)) .=

n∑
i=1

Var(xi )
(
∂g
∂xi

)2

|µ
+ 2

∑
i<j

∑
Cov(xi , xj)

(
∂g
∂xi

)
|µ

(
∂g
∂xj

)
|µ

3. Cov
[
g
(x
∼
)
, h
(x
∼
)]

=
∑

i

∑
j
Cov(xi , xj)

(
∂g
∂xi

)
|µ

(
∂g
∂xj

)
|µ

|µ denotes evaluation of derivative at the values of µ.



Next Time. . .

1/24: Data exploration, checking
1/25: Lab 2
1/26: Linear regression review


