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This Week. ..

1/17: Introduction, Statistical Rethinking
1/18: Lab 1
1/19: Probability review



Objectives

» Review probability laws

» Review definitions of expected value and variance of random
variables

» Present common probability distributions



Why does variability matter?

Variability affects any ecological system.

Noise affects ecological data in two ways:
- measurement error
- process noise

Measurement error is variability in our measurements.
- leads to large confidence intervals and low power

Process noise (process error), variability in the system.
- demographic stochasticity
- environmental stochasticity

We are interested in understanding patterns in our data.

- use probability to describe relationships between processes and
data.

Often assume that our data is generated by some stochastic process
whose expected value is a function of covariates we are interested in.



Basic probability theory

The sample space is the set of all possible outcomes that could
occur.

e.g. for a regular six-sided die

s{1,2,3,4,5,6}
Probability of an event A is the frequency with which that event
occurs.

e.g.
P(1) =1/6



Laws of Probability

1.
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Law of total probability
The probabilities of all possible outcomes of an observation or
experiment add to 1.0

P(heads) + P(tails) = 1.0

. Probability of A or B, or P(AU B)

P(AU B) = P(A) + P(B) — P(AN B).

Mutually exclusive vs. independent events
two mutually exlusive events cannot be independent
mutually exclusive = P(ANB) =10

independence = P(ANB) = P(A)-P(B) #0



Laws of Probability

4. General multiplication rule

P(Al NAN--- ﬂAn) = P(Al) . P(Ag’Al) . P(A3|A1,A2)...

5. Conditional probability

P(A|B), is the probability that A happens if we know or assume B
happens.

P(AN B)

PIAIB) =~ 55



Conditional probability leads to Bayes’ rule

P(AN B)

P(AIB) = — 555

P(AN B) = P(BNA) = P(B|A) - P(A)
pag)  PBIA)PA)

P(B)

This is mostly termed with A being the model (hypothesis) and B
being the data.

i.e. what is the probability of a hypothesis given the data.

pi#0) - PLOIK) PUF)

with P(D) = 3" P(D|H) - P(H)



Random Variables

A random variable is a numerical valued function defined over a
sample space.

The probability distribution describes how the frequency of
occurrence varies across the sample space.

For discrete variables, characterized by f(x),
- the probability distribution function (discrete variables)

f(x) = Prob(X = x)

(for continuous variables, f(x) is the probability density function)

Both types of variables are also described by the cumulative
distribution function, F(x)

F(x) = P(X < x)
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Expected Value of Random Variable X

Discrete random variables

p=EX)=> xiP(X =x)
i=0

Continuous random variables

p=E0) = |

[e.9]

xf(x)dx



Variance of a Random Variable X, E[(X — p)?]

Discrete random variables

Var(X) = > (xi — E(x1))* P(X = x))
i=0

1

Continuous random variables

Var(X) = / " (x5 — E(x))2F(x)dx

— 00

In general
Var(X) = E(XZ) — (E(X))2 = E((X — M)z)

Variances are additive.
Var(X £ Y) = Var(X) + Var(Y) £ 2Cov(X, Y)

The standard deviation of a distribution is v/ Var
The coefficient of variation (CV) is v/ Var/u



Summary of probability distributions



Binomial

Describes the number of successes from a fixed number of trials.
Two possible outcomes on each trial, success or failure.
Probability of success is the same in each trial.

Range: discrete, 0 < x < N

Distribution:
N
X(1 — N—x
<X>p (1-p)

R: dbinom pbinom gbinom rbinom
Parameters:

- p [real, 0-1], probability of success [prob]

- N [positive integer], number of trials [size]
Mean: Np

Variance: Np(1 — p)

CV: sqrt(1— p)/(Np)

Conjugate prior: Beta
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Multinomial

Extension of binomial trials to three or more possible outcomes.
X = (X1, X2,..., Xk)

Range: discrete, 0 < x; < N
Distribution:

Xi

N k
P(Xl:Xl,XQZXg,...,Xk:Xk):( Xk)Hp,-
’ i=1

X1, X2, ...

R: dbinom pbinom gbinom rbinom

Parameters:

- pi[real, 0-1], > pi=1

- N [positive inti:gler], number of samples
E(X;) = Np;

Var(Xi) = Npi(1 — p;)
Cov(X;, X;) = —Npipj , i # j



Poisson

Describes events which occur randomly and independently in time.

Limit of a binomial distribution in which:
N — oo, p — 0 while Np = p is fixed.

Distribution of “rare events” (i.e., p — 0).

Range: discrete (0 < x)

Distribution:
ef)\)\n efrt(rt)n
or
n! n!

R: dpois, ppois, qpois, rpois

Parameters: A (real, positive), expected number per sample
[Lambda] or r (real, positive), expected number per unit effort, area,
time, etc. (arrival rate)

Mean: A (or rt)

Variance: \ (or rt)

CV : 1/VA (or 1/4/1t)

Conjugate prior: Gamma
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Negative Binomial
For binomial trials, the number of failures before n successes.

In ecology, most often used because it is discrete like the Poisson
but the variance can be greater than the mean (overdispersed).

Range: discrete, x > 0

Distribution:
Pix =) = T - oy
or oy K )k 1)
Parameters:

p (0 < p < 1) probability per trial [prob]

or 4 (real, positive) expected number of counts [mu]

n (positive integer) number of successes awaited [size]

or k (real, positive), overdispersion parameter [size]
(= shape parameter of underlying heterogeneity)



Negative Binomial

R: dnbinom, pnbinom, gnbinom, rnbinom

Mean: = n(1—-p)/p

Variance: p + p?/k = n(1 — p)/p?

cv: 2K — 1/ /n(T = p)

Conjugate prior: No simple conjugate prior (Bradlow et al. 2002)

To use the ‘ecology’ parameterization in R you must name mu
explicitly.

The negative binomial is also the result of a Poisson sampling
process where A is Gamma-distributed.
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Continuous Probability Distributions



Uniform distribution

Constant probability across a range with limits a and b
Standard uniform, U(0, 1), frequently used as building block.

Range: a<x<b

Distribution: 1/(b — a)

R: dunif, punif, qunif, runif

Parameters: minimum (a) and maximum (b) limits (real)
[min, max]

Mean: (a+ b)/2
Variance: (b — a)?/12
CV: (b—a)/((a+ b)V3)
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Normal Distribution

Arises from adding things together.

Sum of a large number of independent samples from the same
distribution is approximately normal.

Limit of many distributions (binomial, Poisson, negative binomial,
Gamma).

Range: all real values
2
Distribution: —2— exp (_(X—N) )

V2o 202
R: dnorm, pnorm, qnorm, rnorm

Parameters:

-  (real), mean [mean]

- o (real, positive), standard deviation [sd]
Mean: u
Variance: o
CV:io/u
Conjugate prior: Normal (u); Gamma (1/02)

2
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Gamma

Distribution of waiting times until a certain number of events
occurs.

Continuous counterpart to the negative binomial.

Gamma is very useful. Continuous positive variable with large
variance and (possible) skew.

Range: positive real values

R: dgamma, pgamma, qgamma, rgamma

Distribution: %(a)x"’_le_x/s

Parameters:

s (real, positive), scale: length per event [scale]

or r (real, positive), rate = 1/s; rate at which events occur [rate]
a (real, positive), shape: number of events [shape]

Mean: as or a/r

Variance: as? or a/r?

CV:1/y/a
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Beta

Continuous distribution related to the binomial.

Distribution of probability of success in a binomial trial with a — 1
successes and b — 1 failures.

Very useful in modeling probabilities or proportions.

Range: real, 0 to 1

R: dbeta, pbeta, gbeta, rbeta

Density: srr(ga)Jrr(bg)xa_l(l — x)b-t

Parameters:

- a (real, positive), shape 1: number of successes +1 [shapel]
- b (real, positive), shape 2: number of failures +1 [shape2)]
Mean: a/(a+ b)

Mode: (a—1)/(a+ b—2)

Variance: ab/((a+ b)?)(a+ b+ 1)

CV: /(b/a)/(a+ b+1)
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Lognormal

Not a continuous analogue or limit of some discrete distribution.
Justification: as for normal, but for product of many iid variables.

Used in many situations where Gamma also fits, continuous,
positive distribution with long tail or variance > mean.

Range: positive real values
R: dlnorm, plnorm, qlnorm, rlnorm
ity: —L e (logx—u)?/(20?)
Density: Tarox® A
Parameters:
- p (real): mean of the logarithm [meanlog]
- o (real): standard deviation of the logarithm [sdlog]
Mean: exp(u + 02/2)
Variance: exp(2u + 02)(exp(0?) — 1)
CV: y/exp(c?) — 1 (=~ o when o < 1/2)
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Relationships among distributions

beta-binomial uniform

large 6 a=b=1
—— limit/ special case

binomial <¥------t-tmooooooo- = beta <3----{> conjugate priors

large N,
Y ermediate p + aand b large <-p transform
large N,
small p

normal . loglexp

A
large A lognormal
Poisson ~7-. large shape
large k \"\‘_\
negative binomial "B gamma
k=1 shape=1
geometric exponential

DISCRETE CONTINUOUS



Other common distributions

Discrete

- Geometric (negative binomial with k = 1)

- Beta-binomial (binomial but with p being beta distributed)

- Hypergeometric (useful for sampling without replacement, finite
population)

- Multivariate hypergeometric (similar to the multinomial)

Continuous

- Exponential (distribution of waiting times for a single event)

- Pareto (quantity whose log is exponentially distributed, power
laws!)

- Chi square (distribution of a sum of squared standard normals)

- Student’s t (ratio of a standard normal and the square root of a
scaled chi square)

- F (ratio of two scaled chi-squares)

- Dirichlet (generalization of beta, for a vector that must sum to 1)
- Wishart (generalization of gamma, for a symmetric non-negative
definite matrix)



Delta Method

Calculating expected values and variances of (nonlinear) functions of
continuous (differentiable) random variables using Taylor series

expansion.
2 1+z+ a + a +
e :l: — — R
21 3
Exponential Function Exponential Function

(Taylor’s Version)



Delta Method

Calculating expected values and variances of (nonlinear) functions of
continuous (differentiable) random variables using Taylor series

expansion.
Let x; be a random variable with mean u;(i =1,...,n). Given
some function g(x1,x2, ..., xn), say, g(*), then

1 E(g(X) =

n 82 82
1 1 . g - g
52 ; ert) <3X;2> |M+ZZ covis) <‘9Xiaxj> n

i<j



2. Var(()

og 9g
Z Var(x, <6g) + 222 Cov(x;, ) (8XI)IM <8Xj>|u

i<j

og Jg
3. Cov E E Cov(xi, x; < ) ()
() N0 ) \0% ),

| denotes evaluation of derivative at the values of p.



Next Time...

1/24: Data exploration, checking
1/25: Lab 2
1/26: Linear regression review



