
Biological Stats II : Lab 5

Gavin Fay

02/15/2023

Lab schedule

1/18: Introduction to R and R Studio, working with data
1/25: Intro to Visualization
2/01: Probability, linear modeling
2/08: Data wrangling, model summaries
2/15: Simulation, Resampling
2/22: Iteration
3/01: Creating functions, debugging
3/15: Flex: more modeling (brms, glmmTMB)
3/29: Spatial data or tidymodeling

Segue: Packages in R
Installing packages:
install.packages("packagename")

If in doubt, use the source:
install.packages("packagename", type="source")

Installing packages from github:
devtools::install_github("repositoryname")

Loading (attaching) packages into the workspace:
library(packagename)

Some people use require() instead of library().
Don’t do this!
require() is basically try(library())

Often description of a package and how to use its functions is in the
form of a vignette.
vignette() lists available vignettes.
vignette(packagename) views the vignette for packagename.

Programming practices I

Use projects (RStudio)

Write scripts (or markdown files)

Include whitespace in code
- blank lines, spaces in functions

Use an editor with syntax highlighting

Use a style guide

Indent code

Use meaningful object names

Programming practices II

Test code
- Write smallest possible amount (e.g. 1 line).
- Knit early and often.
- Try simple examples that you know the answer to.
- Always assume that there will be an error somewhere.

View results / objects (e.g. with print()).

Plot results - are they what you expect?

Be careful when copying sections of code and changing a variable
name (it’s super common to forget to change all occurrences).
- hint: use your text editor’s “Find: Replace all” functionality.

Commenting

R ignores everything on a line that follows a #

Comment at the top of your script.
- What the script does, your name, email, date started.

Comment before each function or section of code - What is the
purpose of that section of code, what does it do?
- Comment the ‘why’ not the ‘what’

Comment throughout:
- whenever an unusual function is used
- whenever the code is hard to understand
- whenever an algorithm is particularly useful

Commenting out code

When you make modifications to your code: - Copy the code that
works then comment it out by prefixing it with #. - Change the new
copy of the code.

If you need to revert to the old code, just remove the # before each
line (“uncomment”).

ctrl+shift+C is a shortcut in Rstudio to comment/uncomment
large blocks of code.

In .Rmd files, you can comment out blocks of the file using
<!---
Lines of text and code you want to not be included
--->

Permutation tests
library(moderndive)
null_evals <- evals |>

specify(score ~ gender) |>
hypothesize(null = "independence") |>
generate(reps = 1000, type = "permute") |>
calculate(stat = "diff in means",

order = c("male", "female"))
null_evals_ci <- null_evals |>

summarize(
l = quantile(stat, 0.025),
u = quantile(stat, 0.975)
)

score_means <- evals |> group_by(gender) |>
summarize(avg_score = mean(score))

dscore <- score_means[2,2]-score_means[1,2]

percentile_ci <- null_evals |>
get_confidence_interval(type = "percentile",

level = 0.95)

visualize(null_evals) +
shade_confidence_interval(endpoints = percentile_ci) +
geom_vline(xintercept = as.numeric(dscore),linetype = "dashed")

0

50

100

150

−0.1 0.0 0.1 0.2
stat

co
un

t

Simulation−Based Null Distribution

Lab exercise 1 - permutation test

Use the Laengelmavesi data in ../data/Laengelmavesi2.csv

a. Obtain the data for just the lengths of perch and bream.
b. Plot the distribution of lengths for both species, and calculate

the mean lengths for both species.
c. Conduct a permutation test to assess whether the difference in

mean length between bream and perch is statistically clear.
d. Plot the distribution for the test statistic under the null

hypothesis of no difference in length, and indicate the true
value for the test statistic relative to the two-tailed 95th
percent of the null hypothesis distribution.

e. What are your conclusions?

Auto dataset

in ‘ISLR’ package

`geom_smooth()` using formula 'y ~ x'

0

10

20

30

40

50 100 150 200
horsepower

m
pg

Bootstrapping

Recall:

I Have some data x1, x2, , . . . , xn and we are computing a
statistic.

I Randomly draw n values from the data with replacement (same
value can be drawn multiple times).

I Calculate statistic from new random pseudo-data.
I Repeat a large number of times to obtain the distribution:

t1, t2, . . . , tn.
I Resulting distribution is the bootstrap sampling distribution.
I Compute standard deviation and 95 percent confidence

intervals from this. Finished.

Performing generic case bootstrapping in R

Bootstrap estimates of slope from a linear model.
slope_bootstrap <- Auto |>

specify(formula = mpg ~ horsepower) |>
generate(reps = 1000, type = "bootstrap") |>
calculate(stat = "slope")

percentile_ci <- slope_bootstrap |>
get_confidence_interval(type = "percentile",

level = 0.95)
percentile_ci
A tibble: 1 x 2

lower_ci upper_ci
<dbl> <dbl>

1 -0.174 -0.145

visualize(slope_bootstrap) +
shade_confidence_interval(endpoints = percentile_ci)

0

50

100

150

200

−0.19 −0.18 −0.17 −0.16 −0.15 −0.14 −0.13
stat

co
un

t

Simulation−Based Bootstrap Distribution

Residual bootstrap
slope <- coef(lm(mpg~horsepower,data=Auto))[2]
lm1 <- lm(mpg~horsepower,data=Auto)
automod <- augment(lm1, newdata = Auto) |>

janitor::clean_names()
automod
A tibble: 392 x 12

rownames mpg cylinders displacement horsepower weight acceleration year origin
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 18 8 307 130 3504 12 70 1
2 2 15 8 350 165 3693 11.5 70 1
3 3 18 8 318 150 3436 11 70 1
4 4 16 8 304 150 3433 12 70 1
5 5 17 8 302 140 3449 10.5 70 1
6 6 15 8 429 198 4341 10 70 1
7 7 14 8 454 220 4354 9 70 1
8 8 14 8 440 215 4312 8.5 70 1
9 9 14 8 455 225 4425 10 70 1

10 10 15 8 390 190 3850 8.5 70 1
... with 382 more rows, and 3 more variables: name <fct>, fitted <dbl>, resid <dbl>

autoboot <- automod |> specify(response = resid) |>
generate(reps = 1000, type = "bootstrap") |>
#ungroup() |>
mutate(fitted = automod$fitted) |>
mutate(new_mpg = fitted + resid) |>
mutate(horsepower = automod$horsepower)

autoboot
A tibble: 392,000 x 5
Groups: replicate [1,000]

replicate resid fitted new_mpg horsepower
<int> <dbl> <dbl> <dbl> <dbl>

1 1 -6.62 19.4 12.8 130
2 1 0.792 13.9 14.7 165
3 1 0.902 16.3 17.2 150
4 1 0.771 16.3 17.0 150
5 1 8.75 17.8 26.6 140
6 1 2.59 8.68 11.3 198
7 1 -4.57 5.21 0.637 220
8 1 9.95 6.00 16.0 215
9 1 -3.38 4.42 1.04 225

10 1 -5.52 9.95 4.43 190
... with 391,990 more rows

slope_autoboot <- autoboot |>
group_by(replicate) |>
summarize(slope = coef(lm(new_mpg~horsepower))[2])

slope_autoboot
A tibble: 1,000 x 2

replicate slope
<int> <dbl>

1 1 -0.152
2 2 -0.154
3 3 -0.150
4 4 -0.164
5 5 -0.157
6 6 -0.164
7 7 -0.162
8 8 -0.156
9 9 -0.160

10 10 -0.150
... with 990 more rows
percentile_ci <- quantile(slope_autoboot$slope, c(0.025, 0.975))
percentile_ci

2.5% 97.5%
-0.1685347 -0.1450989

Lab exercise 2

hake.csv contains abundance data for silver hake from tows in the 2015
NMFS spring bottom trawl survey.
a. Produce 5,000 bootstrapped estimates for the mean abundance per tow
based on case resampling (5000 samples).
b. Compare the standard deviation of the bootstrapped estimates of the
mean to the standard error of the mean from the original sample.
c. Compute an approximate 95 percent confidence interval for the mean
based on the bootstrap, assuming normality. Compare this to the interval
based on percentiles of the bootstrap sampling distribution.
d. BONUS Plot how the bootstrap confidence interval for the mean
changes with the number of bootstrap samples. (100, 500, 1000, 2000,
5000, 10000)

Validation Approach

Recall:
Split data into training set and a validation (or hold-out) set.

Fit model to training set, fitted model used to predict the responses for the
observations in the validation set.

Resulting validation set error rate (e.g. MSE for quantitative response) is an
estimate of the test error rate.
set.seed(1)
train <- sample(392,196)
lm.fit <- lm(mpg ~ horsepower, data=Auto, subset=train)
mean((Auto$mpg - predict(lm.fit, Auto))[-train]ˆ2)
[1] 23.26601
lm.fit2 <- lm(mpg ~ poly(horsepower, 2), data=Auto, subset=train)
mean((Auto$mpg - predict(lm.fit2, Auto))[-train]ˆ2)
[1] 18.71646
lm.fit3 <- lm(mpg ~ poly(horsepower, 3), data=Auto, subset=train)
mean((Auto$mpg - predict(lm.fit3, Auto))[-train]ˆ2)
[1] 18.79401

Wages (from ISLR)
ggplot(Wage, aes(y = wage, x = age)) +

geom_point(col = "slateblue", alpha = 0.1, size = 4) +
theme_minimal() +
geom_smooth(method = "lm", col = "orange")

`geom_smooth()` using formula 'y ~ x'

100

200

300

20 40 60 80
age

w
ag

e

k-Fold Cross-Validation
Use cv.glm() with argument K=k to perform k-fold
cross-validation.
set.seed(17)
cv.error.10 <- matrix(0,nrow=10,ncol=10)
for (isim in 1:10) {

cv.error <- map(1:10,
~cv.glm(Auto,
glm(mpg~poly(horsepower,.x),data = Auto),
K=10)$delta[1])

cv.error.10[isim,] <- as.numeric(cv.error)
}
cv.error.10

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 24.27207 19.26909 19.34805 19.29496 19.03198 18.89781 19.12061 19.14666 18.87013
[2,] 24.32221 19.20485 19.20345 19.19061 18.81104 18.93199 18.64288 18.99985 19.09146
[3,] 24.40176 19.28566 19.47768 19.45928 19.11895 18.96636 19.14254 19.19909 19.14876
[4,] 24.34410 19.21850 19.23349 19.29482 19.20885 18.89513 18.83750 19.40794 18.91545
[5,] 24.12350 19.15993 19.30270 19.43933 19.14562 18.77230 18.95511 18.88465 19.07591
[6,] 24.26450 19.20361 19.21035 19.50279 19.03784 19.00893 18.80578 20.09835 18.74927
[7,] 24.21276 19.32266 19.25201 19.57620 18.94538 18.98961 19.36863 18.99092 19.20971
[8,] 24.23926 19.19939 19.36453 19.18138 18.98821 19.20072 18.82207 19.17620 19.02977
[9,] 24.25723 19.19239 19.43090 19.64706 19.03607 18.83338 18.74457 18.78450 19.36472

[10,] 24.06964 19.23239 19.41729 19.54851 19.02514 18.90808 18.94559 19.03320 19.18411
[,10]

[1,] 20.95520
[2,] 19.02690
[3,] 19.96767
[4,] 19.79555
[5,] 19.28447
[6,] 19.23977
[7,] 20.90766
[8,] 19.38514
[9,] 19.19204

[10,] 19.05571

Setting K=n replicates LOOCV.

Lab exercise 3, k-fold cross validation

Using the Wage data set, evaluate the predictive ability of models for wages.
a. Define a unique random number seed. Use 10-fold cross validation to
estimate the test error rate for models fitting a polynomial of age of order 2, 3,
4, 5, and 6.
b. Conduct the validation 20 times for each polynomial. Plot the distribution
(use boxplots) for the validation test error rate as a function of the degree of
polynomial. Based on the results, what order polynomial would you use?
c. Use 5-fold cross-validation to compare the performance of models that include
combinations of:
- a polynomial of age
- education level
- race
- industry
e. What model would you choose based on the test error rates?
f. BONUS How does the model chosen by 5-fold CV compare to that from using
AIC as a model selection tool?

HINTS
Write down the steps you need to take to perform the calculations.
Make use of existing code from earlier in the lab to help.

Lab schedule

1/18: Introduction to R and R Studio, working with data
1/25: Intro to Visualization
2/01: Probability, linear modeling
2/08: Data wrangling, model summaries
2/15: Simulation, Resampling
2/22: Iteration 3/01: Creating functions, debugging
3/15: Flex: more modeling (brms, glmmTMB)
3/29: Spatial data or tidymodeling

