
Chapter 11
Zero-Truncated and Zero-Inflated Models
for Count Data

11.1 Introduction

In this chapter, we discuss models for zero-truncated and zero-inflated count data.
Zero truncated means the response variable cannot have a value of 0. A typical
example from the medical literature is the duration patients are in hospital. For eco-
logical data, think of response variables like the time a whale is at the surface before
re-submerging, counts of fin rays on fish (e.g. used for stock identification), dol-
phin group size, age of an animal in years or months, or the number of days that
carcasses of road-killed animals (amphibians, owls, birds, snakes, carnivores, small
mammals, etc.) remain on the road. These are all examples for which the response
variable cannot take a value of 0.

On their own, zero-truncated data are not necessarily a problem. It is the under-
lying assumption of Poisson and negative binomial distributions that may cause
a problem as these distributions allow zeros within their range of possible val-
ues. If the mean is small, and the response variable does not contain zeros, then
the estimated parameters and standard errors obtained by GLM may be biased. In
Section 11.2, we introduce zero-truncated Poisson and zero-truncated negative bino-
mial models as a solution for this problem. If the mean of the response variable is
relatively large, ignoring the truncation problem, then applying a Poisson or nega-
tive binomial (NB) generalised linear model (GLM), is unlikely to cause a problem.
In such cases, the estimated parameters and standard errors obtained by Poisson
GLM and truncated Poisson GLM tend to be similar (the same holds for the nega-
tive binomial models).

In ecological research, you need to search very hard to find zero-truncated data.
Most count data are zero inflated. This means that the response variable contains
more zeros than expected, based on the Poisson or negative binomial distribution.
A simple histogram or frequency plot with a large spike at zero gives and early
warning of possible zero inflation. This is illustrated by the graph in Fig. 11.1, which
shows the numbers of parasites for the cod dataset that was used in Chapter 10 to
illustrate logistic regression. In addition to presence and absence of parasites in
cod, Hemmingsen et al. (2005) also counted the number of parasites, expressed as
intensity.
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Fig. 11.1 Plot of the frequencies for the response variable Intensity from cod parasite data.
There are 654 zeros, 108 ones, 71 twos, 52 threes, 44 fours, 31 fives, etc. Note the large numbers
of zeros indicating zero inflation. R code to make this graph is presented in Section 11.4

In this chapter, four models are discussed that can deal with the excessive num-
ber of zeros; zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB)
models, zero-altered Poisson (ZAP), and zero-altered negative binomial (ZANB)
models. There are two main distinctions in these abbreviations; ZI versus ZA, and
P versus NB. The latter pair of Poisson versus negative binomial should be familiar
territory with the negative binomial models (ZINB and ZANB) coping with a cer-
tain degree of overdispersion. Furthermore, because a Poisson GLM is nested in a
NB GLM, the ZIP is nested in a ZINB, and a ZAP is nested in a ZANB. The differ-
ence between ZI and ZA is slightly more complicated and is related to the nature of
the zeros. We discuss this further in Sections 11.3 and 11.4. What we call ZI is also
called mixture models in the literature, and our ZA is normally known as two-part
models.

In the past, software for mixture and two-part models used to be in obscure func-
tions, and different software packages gave different results. It is only recently that
these methods have become more popular and a growing number of people are using
the software. This means that most of the bugs have now been filtered out, and pub-
lications with mixture and two-part models applied on ecological data are appear-
ing more frequently (Welsh et al., 1996; Agarwal et al., 2002; Barry and Welsh,
2002; Kuhnert et al., 2005; Minamia et al., 2007; and Potts and Elith, 2006 among
several others). There are also many applications outside ecology; see, for exam-
ple, Lambert (1992), Ridout et al. (1998), Xie et al. (2001), and Carrivick et al.
(2003) among many others in the fields of social science, traffic accident research,
econometrics, psychology, etc. A nice overview and comparison of Poisson, NB,
and zero-inflated models in R is given in Zeileis et al. (2008). This paper also gives
a couple of useful references to publications using mixture and two-part models.

If you start digging into zero-inflated models, you have to rely mainly on papers
as few statistical textbooks cover this topic in any detail. A few exceptions are
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Cameron and Trivedi (1998), Hardin and Hilbe (2007), or Hilbe (2007), but only
a small number of pages are dedicated to mixture and two-part models. As papers
tend to present things in a compact and condensed format, we decided to use this
chapter to explain these methods in more detail. We assume that you are fully famil-
iar with the methods discussed in Chapters 8, 9, and 10.

A detailed explanation of the underlying principle of mixture and two-part mod-
els is given in Sections 11.2–11.5, and in Section 11.6, we compare the different
models and discuss how to choose between them.

11.2 Zero-Truncated Data

In this section, we discuss models that can be used when the response variable is
a count and cannot obtain the value of zero. In this case, we refer to the variable
as being zero truncated. In Section 11.2.1, we discuss the underlying mathematics
for zero-truncated Poisson models and the negative binomial equivalent. In Section
11.2.2, we give an example and discuss software. If you are not interested in the
underlying mathematics, you can skip Section 11.2.1 (but you should still try and
read the summary at the end of that section) and go straight to the example.

Knowledge of the material discussed in this section is required for ZAP and
ZANB models discussed in Section 11.5.

11.2.1 The Underlying Mathematics for Truncated Models

11.2.1.1 Mathematics for the Zero-Truncated Poisson Model

Let Yi be the response variable for observation i. We assume it is Poisson distributed
with mean μi. We have already discussed in Chapter 8, how the Poisson probability
function can be adjusted to exclude zeros, and we briefly revisit it here. The starting
point was the Poisson probability function:

f (yi ; μi |yi ≥ 0) = μyi × e−μi

yi !
(11.1)

Recall that yi is a possible outcome of Yi. The function gives the probability
for each integer value of yi that is equal or larger than 0 for a given mean μi. For
example, the probability that yi = 0 is

f (0; μi ) = μ0 × e−μi

0!
= e−μi

Recall from Chapter 8 that we can exclude the probability that yi = 0 from the
Poisson distribution by dividing its probability function in Equation (11.1) by 1
minus the probability that yi = 0, resulting in
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f (yi ; μi |yi > 0) = μyi × e−μi

(1 − e−μi ) × yi !
(11.2)

From this point onwards, truncated Poisson GLM follows ordinary Poisson
GLM. We use the same mean and variance relationships, the same systematic com-
ponent, and the same link function. Hence, the mean value μi is modelled as an
exponential function of the predictor function:

μi = eα+β1×X1i +···+βq×Xiq

To find the regression parameters, we need to specify a likelihood criterion. The
only difference with Poisson GLM is that we use the probability function in Equa-
tion (11.2) instead of the one in Equation (11.1), and this gives

L =
∏

i
f (yi ; μi |yi > 0) =

∏
i

μyi × e−μi

(1 − e−μi ) × yi !
(11.3)

In Chapter 9, we explained that this expression is based on the probability rule
that Pr(A and B) = Pr(A) × Pr(B) if A and B are independent. The fs in Equation
(11.3) are the probabilities. The principle of maximum likelihood states that for the
given data, we need to maximise L as a function of the regression parameters. To aid
the numerical optimisation routines, we use the log-likelihood so that we can work
with a sum instead of a product:

log(L) =
∑

i
log( f (yi ; μi |yi > 0)) =

∑
i
log

(
μ

yi

i × e−μi

(1 − e−μi ) × yi !

)
(11.4)

Using matrix notation, we replace the β1 × X1i + . . . + βq × Xqi by Xi × β, where
β = (β1, . . ., βq), and Xi contains all explanatory variables for observation i. A bit
of high school mathematics gives

log(L) = −
∑

i
eXi ×β +

∑
i

yi × Xi × β −
∑

i
log(1 − eXi ×β)

−
∑

i
log(Γ(yi + 1))

(11.5)

Just as for the Poisson GLM, we end up with a maximum likelihood criterion that
needs to be maximised as a function of the regression parameters. The algorithm
needs first-order and second-order derivatives (which can easily be determined and
we leave this as an exercise for the reader), and then it is purely a matter of numerical
optimisation, though we end up with a slightly different algorithm compared to
Poisson GLM. Details can be found in Barry and Welsh (2002) or Hilbe (2007).
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11.2.1.2 Mathematics for the Negative Binomial Truncated Model

The NB truncated model follows the same steps. The starting point is the probability
function for y larger or equal to 0 (Chapter 9):

f (yi ; k, μi |yi ≥ 0) = Γ(yi + k)

Γ(k) × Γ(yi + 1)
×

(
k

μi + k

)k

×
(

1 − k

μi + k

)yi

(11.6)

The probability that yi = 0 is given by

f (0; k, μi ) = Γ(0 + k)

Γ(k) × Γ(0 + 1)
×

(
k

μi + k

)k

×
(

1 − k

μi + k

)0

=
(

k

μi + k

)k

To exclude the probability that yi = 0, we divide the probability function in Equa-
tion (11.6) by 1 minus the probability that yi = 0, resulting in

f (yi ; μi |yi > 0) = Γ(yi +k)
Γ(k)×Γ(yi +1) ×

(
k

μi +k

)k
×

(
1 − k

μi +k

)yi
/

(
1 − ( k

μi +k )k
)

(11.7)

We can follow the same steps as in Equations (11.3) and (11.4) and also use the
logarithmic link function. The end result is as follows:

log(L) = log(LNB) − log

(
1 −

(
k

μi + k

)k
)

(11.8)

where log(LNB) is the log likelihood from the NB GLM (see Chapter 9). Note that
the notation in Hardin and Hilbe (2007) and Hilbe (2007) uses a slightly different
parameterisation of k = 1/α.

11.2.1.3 Summary

For those of you who skipped all the mathematical text in this subsection, here is a
short summary. We adjusted the probability functions for the Poisson and negative
binomial (NB) distributions to exclude the probability of a zero observation. We
then specified the log likelihood criterion for the zero-truncated Poisson and NB
models. First-order and second-order derivatives can easily be derived. It is now
only a matter of numerical optimisation to find the regression parameters. Software
code exists to fit these models in R, and an example is given in the next section.

11.2.2 Illustration of Poisson and NB Truncated Models

In this section, we illustrate zero-truncated models. The data are unpublished (at
the time of writing) and were donated by António Mira (University of Évora,
Portugal). The response variable is the number of days that carcasses of road-killed
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animals remain on the road. For illustrative purposes, we only use snakes (Coronella
girondica, Coluber hippocrepis, Elaphe scalaris, and Macroprotodon cucullatus).
We removed some observations because of the unbalanced design (different sample
sizes), and the remaining data set contains 130 observations. There are also potential
issues with spatial and temporal correlation, but in this subsection, we only focus
on the zero truncation.

Figure 11.2 shows a frequency plot of the number of days that snake carcasses
remain on a road. The value of 1 does not represent 24 hours exactly, rather it is just
that we start counting with 1 because each carcass is on the road for at least a couple
of hours. The number of days will never be zero. Except for the lucky snakes that
made it to the other side of the road. They will have a value of zero, but of course,
are not (yet) part of this dataset.

The following R code accesses the data and produces the frequency plot in
Fig. 11.2. The code is self explanatory.

> library(AED); data(Snakes)

> plot(table(Snakes$N days))

Ignoring the zero truncation problem and analysing these data with a Pois-
son GLM is already a major challenge! The explanatory variables are Size cm
(mean size of adults of each species), PDayRain (proportion of days with rain),
Tot Rain (total rainfall in mm), Temp avg (average daily mean temperature),
Road (identity of the road representing traffic intensity; EN114 has high traffic,
EN4 has medium traffic, and EN370 EN114 4 has low traffic), Road Loc (loca-
tion on the road; L = paved lane and V = paved verge), Season, and Species.
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Fig. 11.2 Frequency plot of the response variable N days, the number of days snake carcasses
remain on the road. Note that a value of 0 cannot occur
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The variables Size cm, PDayRain, Tot Rain, and Temp avg are continuous;
all others are nominal.

Exploring these data using pairplots and correlation coefficients for the contin-
uous variables, and boxplots of each continuous explanatory variable conditional
on each nominal explanatory variable, showed that Season is collinear with both
Temp avg and Tot Rain, and there is also collinearity between PDayRain and
Temp avg. We therefore omitted Season and Temp avg. All observations from
the same species had the same size, and therefore, the covariate Species was also
dropped. From a biological point of view, it may be argued that Species is a
more useful covariate than size; however, the degrees of freedom rapidly increase if
various two-way interactions with species are included in the model.

Using common sense, it can be argued that there may be interactions; perhaps,
carcasses of bigger animals at sites with less rain stay longer on the road? Not
all 2-way interactions can be fitted due to the experimental design. We started our
data analysis with a Poisson GLM and quickly noticed overdispersion. Therefore,
a quasi-Poisson model was applied. The results of this model are not presented
here, but there is an overdispersion of 1.5 and various terms are not significant. The
aim of this section is to show the difference between a GLM and a zero-truncated
GLM, and because there is no such thing as a zero-truncated quasi-Poisson model,
we switch to a negative binomial model as NB models allow for a more flexible
approach to overdispersion. R code for the NB GLM, ignoring the zero truncation,
is given by

> library(MASS)

> M1 <- glm.nb(N days ∼ Size cm + PDayRain + Tot Rain +

Road + Road Loc + Size cm:PDayRain +

Size cm:Tot Rain + Size cm:Road +

Size cm:Road Loc + PDayRain:Tot Rain +

PDayRain:Road + PDayRain:Road Loc +

Tot Rain:Road, data = Snakes)

Similar code was used in Chapter 9. The results of the summary(M1) command
are not presented here, but show that various terms are not significant at the 5% level.
The optimal model was found using step(M1), and further fine tuning was done
with the drop1(M1, test = "Chi") command. The optimal model is given
by

> M2A <- glm.nb(N days ∼ PDayRain + Tot Rain +

Road Loc + PDayRain:Tot Rain, data = Snakes)

The two-way interaction PDayRain:Tot Rain and the main term Road Loc
were significant at the 5% level. The explained deviance of this model is 40%. The
parameter k (theta in the R output) in the variance function μi + μi

2/k is equal to
6.72. Interestingly, the model selection process for the quasi-Poisson GLM gave the
same results.
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So far, we have used the glm.nb function from the MASS package for negative
binomial GLM; but it can also be done in other packages, for example, in the VGAM
(Vector Generalized Additive Models) package with the code:

> library(VGAM)

> M2B <- vglm(N days ∼ PDayRain + Tot Rain + Road Loc +

PDayRain:Tot Rain, family = negbinomial,

data = Snakes)

> summary(M2B)

The VGAM package does not come with the base installation of R; so you will
need to download and install it. Actually, this package is rather interesting as it
contains many statistical techniques closely related to those we use in this book.
For example, it has tools for multivariate (multiple response variables) GLMs and
GAMs (Yee and Wild, 1996), and it is one of the few packages that can do zero-
truncated models! It is certainly worthwhile having a look at the package description
at www.stat.auckland.ac.nz/∼yee/VGAM. The zero-truncated NB model is run with
the following R code.

> M3A <- vglm(N days ∼ PDayRain + Tot Rain + Road Loc +

PDayRain:Tot Rain, family = posnegbinomial,

control = vglm.control(maxit = 100),

data = Snakes)

The family = posnegbinomial argument ensures that a zero-truncated
NB model is applied. The summary command can be used to obtain estimated
parameters and standard errors, but the anova and drop1 functions have not yet
been implemented in the VGAM package.

The option family = pospoisson runs a zero-truncated Poisson GLM,
and if vglm is replaced by vgam, we obtain a zero-truncated GAM. To run an ordi-
nary Poisson GLM, use family = poissonff; the extra ff is due to VGAM’s
incompatibility with the ordinary family option in R and is specific to this pack-
age. Another ‘problem’ with VGAM is that it overwrites existing functions. You
can overcome this by using, for example, stats::resid after you have typed
the library(VGAM) command. The stats:: ensures that you use the resid
function from the stats package (which is the one used in all chapters so far)
and not VGAM’s resid function, which is not compatible with glm and lm
objects.

It is interesting to compare the parameters and standard errors estimated using
NB GLM and truncated NB GLM. The following code looks intimidating, but only
collates the corresponding estimated regression parameters in a table:

> Z <- cbind(coef(M2A), coef(M3A)[-2])

> ZSE <- cbind(sqrt(diag(vcov(M2A))),

sqrt(diag(vcov(M3A))[-1]))
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> Comp <- cbind(Z[,1], Z[,2], ZSE[,1], ZSE[,2])

> Comb <- round(Comp, digits = 3)

> colnames(Comb) <-

c("NB", "Trunc.NB", "SE NB", "SE Trunc.NB")

> Comb

The coef command extracts the estimated parameters and the vcov the covari-
ance matrix of the estimated parameters. The diagonal elements of this matrix are
the estimated variances; hence, the square root of these gives the standard errors.
[-2] ensures that only regression parameters are extracted and not the parameter k.
The cbind command prints the columns next to each other, and the colnames
command adds labels. The output is as follows:

NB Trunc.NB SE NB SE Trunc.NB

(Intercept) 0.365 -2.035 0.112 0.267

PDayRain -0.001 0.114 0.193 0.449

Tot Rain 0.120 0.254 0.020 0.065

Road LocV 0.449 1.077 0.148 0.368

PDayRain:Tot Rain -0.109 -0.234 0.022 0.070

The first two columns are the estimated parameters obtained by NB GLM and
truncated NB GLM. As you can see, the estimated parameters obtained using these
two methods are rather different! The same holds for the standard errors in the third
and fourth columns. Also note that the standard errors of the truncated NB are all
larger.

Differences between NB GLM and truncated NB GLM will become smaller if
the observed values are further away from zero. But in this case, with 93% of the
observations smaller than 5, it makes a substantial difference!

11.3 Too Many Zeros

Zero inflation means that we have far more zeros than what would be expected for
a Poisson or NB distribution. Let us have another look at Fig. 11.1, but only at
the frequencies between 0 and 10 (see Fig. 11.3). If the data followed a Poisson
distribution, you would not expect 651 zeros! It depends a bit on the value of the
mean of the Poisson distribution, but 100 zeros would be more likely (see also the
shapes of the Poisson probability functions in Chapter 8).

Ignoring zero inflation can have two consequences; firstly, the estimated param-
eters and standard errors may be biased, and secondly, the excessive number of
zeros can cause overdispersion. Before discussing two techniques that can cope
with all these zeros, we need to ask the question: Why do we have all these
zeros?
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Fig. 11.3 Intensity of
parasites in cod. This is the
same graph as Fig. 11.1,
except that only frequencies
between 0 and 10 are shown

11.3.1 Sources of Zeros

If we assume a Poisson distribution for the data presented in Fig. 11.3, then we
would expect approximately 100–150 zeros. These are at the lower part of the ver-
tical line at intensity = 0. All the other zeros are excess zeros and more than we
expect. Some authors try to make a distinction between these two groups of zeros.
For example, Kuhnert et al. (2005) and Martin et al. (2005) discriminate between
various types of errors that may be causing the zeros in the context of bird abun-
dances in forest patches.

1. First of all, there are structural errors. This means that a bird is not present
because the habitat is not suitable.

2. The second is design error, where poor experimental design or sampling practises
are thought to be the reason. As an example, imagine counting the number of
puffins on the cliffs in the winter. It is highly likely that all samples will be 0 as
it is the wrong season and they are all at sea. Another design error is sampling
for too short a time period or sampling too small an area.

3. The third cause for zeros is observer error. Some bird species look similar, or
are difficult to detect. The less experienced the observer, the more likely he/she
will end up with zero counts for bird species that are difficult to identify. Alter-
natively, the observer may be highly experienced, but it is extremely difficult to
detect a tiny dark bird in a dark field on a dark day.

4. The ‘bird’ error. This means that the habitat is suitable, but the site is not used.

There is even a fifth type of zero, the so-called naughty naughts (Austin and
Meyers, 1996). For non-native English readers, this can be translated as the bad
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zeros. These are zeros due to sampling outside the habitat range that an animal
lives in; for example, sampling for elephants in the sea. Any such zeros should be
removed.

The zeros due to design, survey, and observer errors are also called false zeros
or false negatives. In a perfect world, we should not have them. The structural
zeros are called positive zeros, true zeros, or true negatives. It should be noted
that these definitions of true and false zeros are open to discussion. In some stud-
ies, a false zero may actually be a true zero; see also Martin et al. (2005) for a
discussion.

11.3.2 Sources of Zeros for the Cod Parasite Data

Hemmingsen et al. (2005) looked at the effect of introducing the red king crab
Paralithodes camtschaticus in the Barents Sea. This species is a host for the leech
Johanssonia arctica, which in turn is a vector for a trypanosome blood parasite of
marine fish, including cod. The data set contains a large number of zeros. Let us
discuss what type of zeros we have.

First of all, there are fish that have not been exposed to the parasite, either because
they were caught at a place where there are no red king crabs or they had migrated
long distances and arrived when Hemmingsen and colleagues turned up to catch
them. These zeros can probably be labelled as zeros due to ‘poor’ experimental
design; however, we put quotation marks around poor as there is not much the biol-
ogists can do about it. None the less they are still false zeros that we need to deal
with. We also have zeros because of observer errors. Apparently, it is not always
easy to detect trypanosomes in fish with light infections, even for experienced para-
sitologists (Ken MacKenzie, personal communication). So these are also false zeros.
The other type of zeros, the true zeros or the true negatives, come from fish that
may have been in contact with red king crabs; but for some reason, they have zero
parasites. There may be many reasons for this, including habitat, immunity, and
environmental conditions.

11.3.3 Two-Part Models Versus Mixture Models, and Hippos

In the next section, four models are used to analyse the zero-inflated data: ZIP,
ZINB, ZAP, and ZANB (see also Table 11.1). We have already discussed the dif-
ference between the P and the NB. That is Poisson versus negative binomial, where
the negative binomial allows for extra overdispersion in the positive (non-zero) part
of the data. The difference between the mixture and two-part models is how they
deal with the different types of zeros. The two-part models (ZAP and ZNAB) are
probably easier to explain; they consist of two parts:



272 11 Zero-Truncated and Zero-Inflated Models for Count Data

Table 11.1 Overview of ZIP, ZAP, ZINB and ZANB models. All models can cope with overdis-
persion due to excessive numbers of zeros. The negative binomial models can also cope with
overdispersion due to extra variation in the count data. The ZIP and ZINB are mixture models in
the sense that they consist of two distributions. The ZAP and ZANB are also called hurdle models,
conditional models, or compatible models

Model Full name Type of model Overdispersion

ZIP Zero-inflated Poisson Mixture Zeros
ZINB Zero-inflated negative binomial Mixture Zeros and counts
ZAP Zero-altered Poisson Two-part Zeros
ZANB Zero-altered negative binomial Two-part Zeros and counts

1. In first instance, the data are considered as zeros versus non-zeros and a binomial
model is used to model the probability that a zero value is observed. It is possible
to use covariates in this model, but an intercept-only model is also an option.

2. In the second step, the non-zero observations are modelled with a truncated Pois-
son (ZAP) or truncated negative binomial (ZANB) model, and a (potentially dif-
ferent) set of covariates can be used. Because the distributions are zero truncated,
they cannot produce zeros.

You can use specific software for ZAPs and ZANBs, but it is also possible to
carry out these two steps manually with a binomial GLM and a Poisson/NB GLM;
both give the same results in terms of estimated parameters and standard errors. The
advantage of using specialised ZAP or ZANB software is that it gives one AIC for
both models (this can also be calculated manually from the two separate models),
and it is more flexible for hypothesis testing for the combined model. Figure 11.4
shows a graphical presentation of the two-part, or hurdle, models for the hippo
example. The name hurdle comes from the idea that whatever mechanism is causing
the presence of hippos, it has to cross a hurdle before values become non-zero. The
important point is that the model does not discriminate between the four different
types of zeros.

The ZIP and ZINB models work rather differently. They are also called mixture
models because the zeros are modelled as coming from two different processes: the
binomial process and the count process. As with the hurdle models, a binomial GLM
is used to model the probability of measuring a zero and covariates can be used in
this model. The count process is modelled by a Poisson (ZIP) or negative binomial
(ZINB) GLM. The fundamental difference with the hurdle models is that the count
process can produce zeros (the distribution is not zero truncated).

The underlying process of the mixture model is sketched in Fig. 11.5. In the
count process, the data are modelled with, for example, a Poisson GLM, and under
certain covariate conditions, we count zero hippos. These are true zeros. But there
is also a process that generates only false zeros, and these are modelled with a bino-
mial model. Hence, the binomial GLM models the probability of measuring a false
positive versus all other types of data (counts and true zeros).
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I am not here, because
the habitat is not good!

Here we are!

0 hippos

>0 hippos

You didn't see me! I
was just under the
water.

I am not here, but
the habitat is good!

You thought I was a
crocodile.

Fig. 11.4 Sketch of a two-part, or hurdle model. There are two processes; one is causing zeros
versus non-zeros, the other process is explaining the non-zero counts. This is expressed with the
hurdle in the circle; you have to cross it to get non-zero counts. The model does not make a
distinction between the different types of zeros

Here we are!

0 hippos

0 hippos

>0 hippos
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Count process

You didn't see me! I
was just under the
water.

You thought I was a
crocodile.

I am not here, but
the habitat is good!

I am not here, because
the habitat is not good!

Fig. 11.5 Sketch of the underlying principle of mixture models (ZIP and ZINB). In counting
hippos at sites, one can measure a zero because the habitat is not good (the hippos don’t like
the covariates), or due to poor experimental design and inexperienced observers (or experienced
observers but difficult to observe species)
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Summarising, the fundamental difference between mixture and two-part models
is how the zeros are modelled. Or formulated differently, how do you want to label
the zeros in the data? There are many papers where selection criteria (for exam-
ple, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and
estimated parameters) are obtained from Poisson, quasi-Poisson, NB, ZIP, ZINB,
ZAP, and ZANB GLMs, and the model with the lowest value is deemed as ‘the best’
model. We do this later in this chapter, but it is perhaps better to choose between the
latter four models based on biological knowledge.

It should be noted that labelling the different types of zeros and classifying them
into two groups, false and true zeros, is useful for the ecological interpretation, but
the bottom line is that in a mixture model, some of the zeros are modelled with the
covariates that are also used for the positive count data, and all extra zeros are part
of the zeros in the binomial model. For this process to work, it is unnecessary to
split the data into true zeros and false zeros.

11.4 ZIP and ZINB Models

We follow the same approach as in Section 11.2; first we discuss the maximum like-
lihood for the ZIP and ZINB models in Section 11.4.1 and provide an example and
R code in Section 11.4.2. If you are not interested in the underlying mathematics,
just read the summary at the end of Section 11.4.1, and continue with the example.

11.4.1 Mathematics of the ZIP and ZINB

Let us return to the hippo example in Fig. 11.5 and focus on the question: What is
the probability that you have zero counts? Let Pr(Yi) be the probability that at site i,
we measure a hippo. The answer to the question is

Pr(Yi = 0) = Pr(False zeros) + (1 − Pr(False zeros))

× Pr(Count process gives a zero)
(11.9)

The component Pr(False zeros) is the upper part of the graph in Fig. 11.5. The
second component comes from the probability that it is not a false zero multiplied
by the probability that it is a true zero. Basically, we divide the data in two imaginary
groups; the first group contains only zeros (the false zeros). This group is also called
the observations with zero mass. The second group is the count data, which may
produce zeros (true zeros) and as well as values larger than zero. Note that we are
not actively splitting the data in two groups; it is just an assumption that we have
these two groups. We do not know which of the observations with zeros belong to a
specific group. All that we know is that the non-zeros (the counts) are in group 2.

Things like ‘probability of false zero’, and 1 minus this probability indicates
a binomial distribution, and indeed, this is what we will do. We assume that the
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probability that Yi is a false zero is binomially distributed with probability πi, and
therefore, we automatically have the probability that Yi is not a false zero is equal to
1 − πi. Using this assumption, we can rewrite Equation (11.9):

Pr(Yi = 0) = πi + (1 − πi ) × Pr(Count process at site i gives a zero) (11.10)

So, what do we do with the term Pr(Count process gives a zero)? We assume that
the counts follow a Poisson, negative binomial, or geometric distribution. And this
is the difference between zero-inflated Poisson and zero-inflated negative binomial
models. Because the geometric distribution is a special case of the NB, it does not
have a special name like ZIP or ZINB.

Let us assume for simplicity that the count Yi follows a Poisson distribution with
expectation μi. We have already seen its probability function a couple of times, but
just to remind you

f (yi ; μi |yi ≥ 0) = μyi × e−μi

yi !
(11.11)

In Section 11.2, we showed that for a Poisson distribution, the term Pr(Count
process gives a zero) is given by

f (yi = 0; μi |yi ≥ 0) = μ0 × e−μi

0!
= e−μi (11.12)

Hence, Equation (11.10) can now be written as

Pr(yi = 0) = πi + (1 − πi ) × e−μi (11.13)

The probability that we measure a 0 is equal to the probability of a false zero,
plus the probability that it is not a false zero multiplied with the probability that we
measure a true zero.

This was the probability that Yi = 0. Let us now discuss the probability that Yi is
a non-zero count. This is given by

Pr(Yi = yi ) = (1 − Pr(False zero)) × Pr(Count process) (11.14)

Because we assumed a binomial distribution for the binary part of the data (false
zeros versus all other types of data) and a Poisson distribution for the count data, we
can write Equation (11.14) as follows:

Pr(Yi = yi |yi > 0) = (1 − πi ) × μyi × e−μi

yi !
(11.15)

Hence, we have the following probability distribution for a ZIP model.
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Pr(yi = 0) = πi + (1 − πi ) × e−μi

Pr(Yi = yi |yi > 0) = (1 − πi ) × μyi × e−μi

yi !
(11.16)

The notation Pr() stands for probability; it is probably better to use the notation
in terms of probability functions f:

f (yi = 0) = πi + (1 − πi ) × e−μi

f (yi |yi > 0) = (1 − πi ) × μyi × e−μi

yi !
(11.17)

The last step we need is to introduce covariates. Just as in Poisson GLM, we
model the mean μi of the positive count data as

μi = eα+β1×Xi1+···+βq×Xiq (11.18)

Hence, covariates are used to model the positive counts. What about the proba-
bility of having a false zero, πi? The easiest approach is to use a logistic regression
with an intercept:

πi = eν

1 + eν
(11.19)

where ν is an intercept. But, what if the process generating false zeros depends on
covariates? Nothing stops us from including covariates that model the probability of
false zeros:

πi = eν+γ1×Zi1+···γq×Ziq

1 + eν+γ1×Zi1+···γq×Ziq
(11.20)

We used the symbol Z for the covariates as these may be different to the covari-
ates that influence the positive counts. γ s are regression coefficients.

We are now back on familiar territory; we have a probability function in Equation
(11.17), and we have unknown regression parameters α, β1, . . ., βq, ν, γ 1, . . ., γ q.
It is now a matter of formulating the likelihood equation based on the probability
functions in Equation (11.17); take the logarithm, get derivatives, set them to zero,
and use a very good optimisation routine to get parameter estimates and standard
errors. We do not present all the mathematics here, instead see p. 126 in Cameron
and Trivedi (1998) or p. 174 in Hilbe (2007).

The only difference between a ZIP and ZINB is that the Poisson distribution
for the count data is replaced by the negative binomial distribution. This allows for
overdispersion from the non-zero counts. The probability functions of a ZINB are
simple modifications of the ones from the ZIP:

f (yi = 0) = πi + (1 − πi ) ×
(

k

μi + k

)k

f (yi |yi > 0) = (1 − πi ) × fNB(y)
(11.21)

The function fNB(y) is given in Equation (11.6).
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11.4.1.1 The Mean and the Variance in ZIP and ZINB Models

Before giving an example, we need to discuss what the expected mean and vari-
ance of a ZIP and ZINB model are. In a Poisson GLM, we have E(Yi) = μi and
var(Yi) = μi, whereas in an NB GLM we have E(Yi) = μi and var(Yi) = μi + μi

2/k.
In ZIP and ZINB, this is slightly different due to the definition of the probability
functions in Equations (11.17) and (11.21). To derive these means and variances,
we need a couple of basic rules:

1. E(Y) = Σ y × f(y). The summation is over y = 0, 1, 2, 3, etc. The function f
is either the Poisson probability function in Equation (11.11) or the NB from
Equation (11.6).

2. var(Y) = E(Y2) – E(Y)2.
3. Γ(y + 1) = y Γ(y).

Using these rules and a bit of basic mathematics (and a lot of paper), we obtain
the following expressions for the mean and variance of a ZIP.

E(Yi ) = μi × (1 − πi )

var(Yi ) = (1 − πi ) × (μi + πi × μ2
i )

(11.22)

You can find these also on p. 126 in Cameron and Trivedi (1998). If the probabil-
ity of false zeros is zero, that is πi = 0, we obtain the mean and variance equations
from the Poisson GLM. If πi > 0, then the variance is larger than the mean; hence,
excessive number of (false) zeros causes overdispersion!

The equations for the ZINB follow the same steps (and are a bit more tedious to
obtain) and are as follows.

E(Yi ) = μi × (1 − πi )

var(Yi ) = (1 − πi ) × (μi + μ2
i

k
) + μ2

i × (π2
i + πi )

(11.23)

If the probability of false zeros is 0, we obtain the mean and variance of the NB
GLM. Now that we have expressions for the mean and variances of ZIP and ZINB
models, we can calculate Pearson residuals:

Pearson residuali = Yi − (1 − πi ) × μi√
var(Yi )

Depending whether a ZIP or ZINB is used, substitute the appropriate variance.
μi and πi are given by Equations (11.18) and (11.20), respectively.

11.4.1.2 Summary

If you skipped the mathematics above, here is a short summary. We started asking
ourselves how you can measure zero hippos. This is because we can measure either
false zeros or true zeros. We then defined πi as the probability that we measure a
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false zero at site i, and for the count data we assumed a Poisson distribution with
mean μi. This leads to a statement of the form: The probability that we measure
0 hippos is given by the probability that we measure a false zero plus the probability
that we do not measure a false zero multiplied with the probability that we measure
a true zero. In the same way we can specify the probability that we measure a non-
zero count: The probability that we do not measure a false zero multiplied with the
probability of the count. Now fill in the distributions, and we get Equation (11.17).
The mean values μi and πi can be modelled in terms of covariates. For example, the
average number of hippos at site i may depend on the availability of food, and the
probability of counting a false zero (false zero) may be because the observer needs
better glasses (use observer experience as covariate to model πi). The rest is a matter
of formulating and optimising a maximum likelihood equation, which follows the
type of equations we saw in earlier sections and chapters.

It is important to realise that our count process, as modelled by a Poisson process
can produce zeros.

11.4.2 Example of ZIP and ZINB Models

We now show an application of ZIP and ZINB models using the cod parasite data.
Recall that the choice between a ZIP and ZINB depends whether there is overdis-
persion in the count data. So, if you apply a ZIP, and there is still overdispersion,
just apply the ZINB. We use the pscl package (Zeileis et al., 2008) for inflated
models.

In Chapter 10, we applied a binomial model for the cod parasite data. However,
the numbers of parasites were also measured, and this is a count. The following
code loads the data, defines the nominal variables, and removes the missing values
(which are present in the response variable). Removing missing values is not really
necessary, but it makes the R code for model validation easier, especially when
plotting residuals versus the original explanatory variables.

> library(AED); data(ParasiteCod)

> ParasiteCod$fArea <- factor(ParasiteCod$Area)

> ParasiteCod$fYear <- factor(ParasiteCod$Year)

> I1 <- is.na(ParasiteCod$Intensity) |

is.na(ParasiteCod$fArea) |

is.na(ParasiteCod$fYear) |

is.na(ParasiteCod$Length)

> ParasiteCod2 <- ParasiteCod[!I1, ]

> plot(table(ParasiteCod2$Intensity),

ylab = "Frequencies",

xlab = "Observed intensity values") #Fig. 11.1

The pscl package is reasonably new, and we are using version 0.92. The func-
tion zeroinfl applies a zero-inflated model, and the required R code is as follows.
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> library(pscl)

> f1 <- formula(Intensity ∼ fArea*fYear +

Length | fArea * fYear + Length)

> Zip1 <- zeroinfl(f1, dist = "poisson",

link = "logit", data = ParasiteCod2)

We could also have typed zeroinfl(f1) as we used default settings for the
dist and link options. The dist option specifies the distribution for the count
data, and the available choices are Poisson, negative binomial, and geometric. The
link = logit option specifies the logistic link for the false zeros versus the
non-false zeros (the true zeros plus the positive counts). But the distribution will
always be a binomial. Now let us focus on the more difficult bit, the formula f1.
The function zeroinfl allows the following formulae specifications.

1. Y ∼ X1 + X2. This is equivalent to: Y ∼ X1 + X2 | 1.
2. Y ∼ X1 + X2 | X1 + X2

3. Y ∼ X1 + X2 | Z1 + Z2

The first option specifies the following link functions for the count data and the
binomial data:

μi = eα+β1×Xi1+β2×Xi2 and πi = eν

1 + eν

The mean μi for the Poisson count data is modelled in terms of the covariates X1

and X2 and the probability πi for the binomial distribution with a constant. If you
think, purely based on biology, that the probability of false zeros is also a function
of X1 and X2, then use the second option:

μi = eα+β1×Xi1+β2×Xi2 and πi = eν+γ1×Xi1+γ2×X2

1 + eν+γ1×Xi1+γ2×Xi2

If you want to model the probability of false zeros with a different set of covari-
ates, say Z1 and Z2, then go for option 3, and use

μi = eα+β1×Xi1+β2×Xi2 and πi = eν+γ1×Zi1+γq×Zi2

1 + eν+γ1×Zi1+γq×Zi2

In this model, the count process is modelled with a different set of covari-
ates compared to the process generating the false zeros. In the theory section, we
explained this in terms of measuring no hippos because you forgot your glasses
(Z describes the quality of the observer) and X for the count process can be habitat
variables.

We went for option 2, but we show in a moment that the model in option 1 is
nested in the model in option 2, which means that we can compare them with a
likelihood ratio test. Let us return to our R code for the formula.
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f1 <- formula(Intensity ∼ fArea * fYear +

Length | fArea*fYear + Length)

This means that the following link functions (in words) are applied.

μi = eArea+Year+Area×Year+Length and πi = eArea+Year+Area×Year+Length

1 + eArea+Year+Area×Year+Length

You could also copy the code inside the formula command directly
into the zeroinfl command, but the code becomes rather intimidating. The
summary(Zip1) command gives the estimated parameters, standard errors,
z-values, and p-values, but these values are not presented here. The interaction term
for the log-link function is significant, and the same can be said for the logistic link
function. Hence, the Area × Year term seems to be important for the counts, but
also for the probability of measuring false zeros. Length has no effect on the false
zeros.

However, the ZIP model uses a Poisson distribution for the counts, and the ordi-
nary Poisson GLM applied on these data already showed overdispersion. Before
continuing with the model selection and validation, we need to look whether we
have dealt properly with the overdispersion. Remember that the ZIP model only
deals with zero inflation, not directly with overdispersion in the non-zero count data.
If the overdispersion in a Poisson GLM is caused by the excessive number of zeros,
then the ZIP will take care of the overdispersion, and we are finished. But if the
overdispersion is not caused by the zeros, then the ZIP is not the appropriate model
either! The best way to judge whether the ZIP is acceptable is to compare it with a
ZINB as these models are nested.

The following code applies a ZINB, and applies a likelihood ratio test, and the
output is given as well. The package lmtest is not part of the base installation,
and you will need to download and install it.

> Nb1 <- zeroinfl(f1, dist = "negbin", link = "logit",

data = ParasiteCod2

> library(lmtest)

> lrtest(Zip1,Nb1)

Likelihood ratio test

Model 1: Intensity ∼ fArea * fYear + Length | fArea *
fYear + Length

Model 2: Intensity ∼ fArea * fYear + Length | fArea *
fYear + Length

#Df LogLik Df Chisq Pr(>Chisq)

1 26 -6817.6

2 27 -2450.4 1 8734.2 < 2.2e-16

Recall from Chapter 9 that with the likelihood ratio test, we are testing
whether the variance structure of the Poisson, var(Yi) = μi, is the same as the
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variance structure of the NB, var(Yi) = μi + μi
2 / k. For the purpose of this test,

it is probably easier to use the notation var(Yi) = μi + α × μi
2 for the NB, where

α = 1/k, because the null hypothesis (the Poisson variance equals the NB variance)
can then be written as H0: α = 0 (note that we are testing on the boundary, but the
lrtest function corrects for this). The results of this test provide overwhelming
evidence to go for a ZINB, instead of a ZIP. The numerical output of the ZINB is
obtained with the command summary(Nb1) and is as follows.

> summary(Nb1)

Call:

zeroinfl(formula = f1, data = ParasiteCod2,

dist = "negbin", link = "logit")

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.724165 0.344488 10.811 < 2e-16

fArea2 0.197832 0.329187 0.601 0.54786

fArea3 -0.646241 0.277843 -2.326 0.02002

fArea4 0.709638 0.252319 2.812 0.00492

fYear2000 0.063212 0.295670 0.214 0.83071

fYear2001 -0.940197 0.605908 -1.552 0.12073

Length -0.036246 0.005109 -7.094 1.3e-12

fArea2:fYear2000 -0.653255 0.535476 -1.220 0.22248

fArea3:fYear2000 1.024753 0.429612 2.385 0.01707

fArea4:fYear2000 0.534372 0.415038 1.288 0.19791

fArea2:fYear2001 0.967809 0.718086 1.348 0.17773

fArea3:fYear2001 1.003671 0.677373 1.482 0.13842

fArea4:fYear2001 0.855233 0.654296 1.307 0.19118

Log(theta) -0.967198 0.096375 -10.036 < 2e-16

Zero-inflation model coefficients (binomial with logit

link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.19106 0.78312 0.244 0.807249

fArea2 2.01576 0.57396 3.512 0.000445

fArea3 1.90753 0.55093 3.462 0.000535

fArea4 -0.73641 0.86427 -0.852 0.394182

fYear2000 -1.07479 2.01183 -0.534 0.593180

fYear2001 3.29534 0.71139 4.632 3.62e-06

Length -0.03889 0.01206 -3.226 0.001254

fArea2:fYear2000 0.46817 2.09007 0.224 0.822759

fArea3:fYear2000 -0.79393 2.16925 -0.366 0.714369

fArea4:fYear2000 -12.93002 988.60803 -0.013 0.989565

fArea2:fYear2001 -3.20920 0.83696 -3.834 0.000126

fArea3:fYear2001 -3.50640 0.83097 -4.220 2.45e-05

fArea4:fYear2001 -2.91175 1.10650 -2.631 0.008501
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Theta = 0.3801

Number of iterations in BFGS optimization: 52

Log-likelihood: -2450 on 27 Df

The z- and p-values of the parameters for the count model (upper part of the
output) are rather different, compared to the ZIP! You would expect this as there is
overdispersion. The sentence with the BFGS phrase refers to the number of itera-
tions in the optimisation routines.

The question that we should now focus on is which of the explanatory variables
can be dropped from the model. The candidates are the Area × Year interaction term
for the count model (most levels have high p-values) and the Area × Year interaction
term for the logistic model (some levels are not significant). In fact, why don’t we
just drop each term in turn and select the optimal model using the likelihood ratio
statistic or AIC. The options are

1. Drop length from the count model. Call this Nb1A.
2. Drop the Area × Year term from the count model. Call this Nb1B.
3. Drop length from the logistic model. Call this Nb1C.
4. Drop the Area × Year term from the logistic model. Call this Nb1D.

The models Nb1 (without dropping anything), Nb1A, Nb1B, Nb1C, and Nb1D
are given below.

nb1: μi = eArea+Year+Area×Year+Length πi = eArea+Year+Area×Year+Length

1+eArea+Year+Area×Year+Length

nb1A: μi = eArea+Year+Area×Year πi = eArea+Year+Area×Year+Length

1+eArea+Year+Area×Year+Length

nb1B: μi = eArea+Year+Length πi = eArea+Year+Area×Year+Length

1+eArea+Year+Area×Year+Length

nb1C: μi = eArea+Year+Area×Year+Length πi = eArea+Year+Area×Year

1+eArea+Year+Area×Year

nb1D: μi = eArea+Year+Area×Year+Length πi = eArea+Year+Length

1+eArea+Year+Length

You can implement these models with the code

> #Drop Length from count model

> f1A <-formula(Intensity ∼ fArea * fYear |

fArea * fYear + Length)

> #Drop interaction from count model

> f1B <-formula(Intensity ∼ fArea + fYear+

Length | fArea * fYear + Length)

> #Drop Length from binomial model

> f1C<-formula(Intensity ∼ fArea * fYear+

Length | fArea * fYear)

> #Drop interaction from binomial model

> f1D<-formula(Intensity ∼ fArea * fYear+

Length | fArea + fYear + Length)
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> Nb1A <- zeroinfl(f1A, dist = "negbin",

link = "logit", data = ParasiteCod2)

> Nb1B <- zeroinfl(f1B, dist = "negbin",

link = "logit", data = ParasiteCod2)

> Nb1C <- zeroinfl(f1C, dist = "negbin",

link = "logit", data = ParasiteCod2)

> Nb1D <- zeroinfl(f1D, dist = "negbin",

link = "logit", data = ParasiteCod2)

Just as we did in Chapters 4, 5, and 6, we use the likelihood ratio test to compare
each nested model Nb1A, Nb1B, Nb1C, and Nb1D with the full model Nb1, and if
a term is not significant, drop the least significant one. The required code is

> lrtest(Nb1,Nb1A); lrtest(Nb1,Nb1B)

> lrtest(Nb1,Nb1C); lrtest(Nb1,Nb1D)

Table 11.2 shows the results. The AIC values were obtained with the command
AIC(Nb1A,Nb1B,Nb1C,Nb1D). The model, in which the Area × Year interac-
tion was dropped from the count data model gave the lowest AIC and an associated
p-value of 0.026; so we might as well drop it. These tests are approximate, and
therefore, p = 0.026 is not convincing. The AICs of the model with and without the
Area × Year interaction are also similar.

This means that we continue with the model selection procedure and test
whether Length, Area, or Year can be dropped from the count model and length
and the Area × Year interaction from the logistic model. Results are not shown
here, but no further terms could be dropped. This means that we can now say:
‘Thank you for producing the numerical output from the first ZINB model, but
it is not the information we need’. The parameters of the optimal model are
given by

> summary(Nb1B)

Call:

zeroinfl(formula = f1B, data = ParasiteCod2,

dist = "negbin", link = "logit")

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.497280 0.326888 10.699 < 2e-16

fArea2 0.254160 0.229988 1.105 0.26912

fArea3 -0.200901 0.205542 -0.977 0.32836

fArea4 0.912450 0.195039 4.678 2.89e-06

fYear2000 0.462204 0.173067 2.671 0.00757

fYear2001 -0.128524 0.166784 -0.771 0.44094

Length -0.034828 0.004963 -7.017 2.27e-12

Log(theta) -0.985648 0.095385 -10.333 < 2e-16
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Table 11.2 Results of the model selection in ZINB

Dropped term df AIC Likelihood ratio test

None 27 4954.897
Length from μi 26 4994.993 X2 = 42.096 (df = 1, p < 0.001)
Area × Year from μi 21 4957.146 X2 = 14.249 (df = 6, p = 0.026)
Length from πi 26 4965.019 X2 = 12.122 (df = 1, p < 0.001)
Area × Year from πi 21 4961.751 X2 = 18.853 (df = 6, p = 0.004)

Zero-inflation model coefficients (binomial with logit

link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.16057 0.85842 -0.187 0.851617

fArea2 2.18198 0.65106 3.351 0.000804

fArea3 2.23765 0.61803 3.621 0.000294

fArea4 -0.50954 0.90067 -0.566 0.571570

fYear2000 -0.60158 1.55344 -0.387 0.698564

fYear2001 3.71075 0.72278 5.134 2.84e-07

Length -0.03588 0.01150 -3.121 0.001801

fArea2:fYear2000 0.40925 1.61583 0.253 0.800055

fArea3:fYear2000 -1.81000 1.83708 -0.985 0.324495

fArea4:fYear2000 -10.94642 285.39099 -0.038 0.969404

fArea2:fYear2001 -3.71145 0.84033 -4.417 1.00e-05

fArea3:fYear2001 -3.99409 0.81410 -4.906 9.29e-07

fArea4:fYear2001 -3.37317 1.09981 -3.067 0.002162

Theta = 0.3732

Number of iterations in BFGS optimization: 45

Log-likelihood: -2458 on 21 Df

For publication, you should also give one p-value for the Area and Year terms
in the count model, and one p-value for the interaction term in the logistic model.
Just drop these terms in turn, use the likelihood ratio test, and quote the Chi-square
statistic, degrees of freedom and a p-value. If you are not 100% sure, here are our
results for the count model: Length (X2 = 41.604, df = 1, p < 0.001), Year (X2 =
12.553, df = 2, p = 0.002), Area (X2 = 47.599, df = 3, p < 0.001), and for the logis-
tic model: length (X2 = 10.155, df = 1, p = 0.001) and the Area × Year interaction
(X2 = 47.286, df = 6, p < 0.001).

This was the model selection. There are two more things we need to do; model
validation and model interpretation of the optimal ZINB model.

11.4.2.1 Model Validation

The keyword is again residuals. You need to plot Pearson residuals against the fit-
ted values and Pearson residuals against each explanatory variable and you should
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not see any pattern. It is also useful to plot the original data versus the fitted data;
hopefully, they form a straight line.

If you fit a ZIP model with the function zeroinfl, Pearson residuals for the
count data can be obtained by the R command:

> EP <- residuals(Zip1, type = "pearson").

There are multiple packages for zero-inflated data, and it is not always clear how
exactly residuals are calculated. Because we believe in ‘know what you are doing’,
we show you how to get the Pearson residuals using the equations we derived in the
previous subsection.

Let us extract the probabilities πi, the probability of a false zero. They are
obtained by

> EstPar <- coef(Nb1B,model = "zero")

> Z <- model.matrix(Nb1B,model = "zero")

> g <- Z %*% EstPar

> p <- exp(g) / (1 + exp(g))

The p in the code is πi. The coeff command with the option model= "zero"
gives the estimated parameters presented above (Nb1B is our optimal ZINB model).
The μi from Equation (11.18) is obtained by

> EstPar2 <- coef(Nb1B, model = "count")

> X <- model.matrix(Nb1B, model = "count")

> g <- X %*% EstPar2

> mu1 <- exp(g)

Using Equation (11.23), the expected values of a ZINB model are given by

> mu <- (1 - p) * mu1

If you compare this result with the results of fitted(Nb1B) or predict
(Nb1B), you should get the same values. Finally, we show how to get the variance
and Pearson residuals:

> k <- Nb1B$theta

> VarY <- ((muˆ2) / k + mu)*(1 - p) +

(muˆ2)*(pˆ2 + p)

> EP <- (ParasiteCod2$Intensity - mu) / sqrt(VarY)

These should give the same results as the residuals command; but it is good
to know that we can do it ourselves! The rest is a matter of plotting these residuals
against everything we have and hope that there are no clear patterns. We do not show
these graphs here.
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Fig. 11.6 Fitted curves for the logistic regression model. The vertical axis shows the probability
of measuring a false zero, and the horizontal axis length of cod. Each line corresponds to an area
and year combination

11.4.2.2 Model Interpretation

The question we now focus on is: What does it all mean? To answer this question,
we sketch the results of the model. There are two components to plot; the logistic
model for the false zeros versus all other data, and the count model versus all other
data. We first focus on the logistic regression part. Fitted values can be obtained by
the predict function, or you can do it manually (which is what we did). We took
the estimated intercepts and slopes from the zero-inflated part of the optimal ZINB
model (Nb1B), created length values from 17 to 100 cm, and calculated the fitted
values for each area and year combination. This is a straightforward exercise and
was explained in Chapter 10. The results are given in Fig. 11.6. It seems that the
highest probabilities of false zeros are obtained for small fish in area 1 in 2001, in
area 2 in all years, and in area 3 in 1999 and 2001. Explained differently, in these
areas and these years, you are likely to catch small cod with zero parasites, but these
zeros are false zeros.

A similar graph was drawn for the count data. In this case, fitted values are
obtained from Equation (11.23). Regression coefficients were taken from the upper
part of the summary(Nb1B) output. Area 4 in 1999 and 2000 has the highest val-
ues. This information can also be derived from the estimated regression parameters;
so the need for a graph is limited.

11.5 ZAP and ZANB Models, Alias Hurdle Models

In the previous section, we assumed the zeros for the cod data consist of false zeros
and true zeros. In this section, we do not discriminate between the four types of
zeros; they are just zeros.
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We follow the same approach as in Section 11.2; first we present the probability
functions for the two-part models and give the maximum likelihood equations in
Section 11.5.1, and an example plus the R code is presented in Section 11.5.2. If
you are not interested in the underlying mathematics, just read the summary at the
end of Section 11.5.1.

11.5.1 Mathematics of the ZAP and ZANB

In the hurdle model (ZAP and ZANB), we consider the data on a presence and
absence level and analyse the presence data with a count model. Actually, if you
apply two analyses, one binomial GLM and one Poisson (or NB) GLM, you will get
the same estimated regression parameters.

A small difference is that with ZIP and ZINB, the binomial GLM models the
probability of a false zero versus other types of data, whereas in ZAP and ZANB,
the binomial GLM models the probability of presence versus absence. Hence, the
estimated regression parameters obtained by ZAP and ZANB should have opposite
signs compared to those obtained by ZIP and ZINB due to the definition of π .

The underlying idea for the hurdle model is that there are two ecological pro-
cesses playing a role. In the context of the hippo example, one process is causing the
absence of hippos, and at those sites where hippos are present, there is a second pro-
cess influencing the number of hippos. The probability function for a hurdle model
is build up accordingly. The binomial distribution is used to model the absence and
presence of hippos, and a Poisson (or negative binomial or geometric) distribution
for the counts. This leads to the following probability function for the Poisson ZAP:

fZAP(y; β, γ ) =
⎧
⎨

⎩

fbinomial(y = 0; γ ) y = 0

(1 − fbinomial(y = 0; γ )) × fPoisson(y; β)

1 − fPoisson(y = 0; β)
y > 0

(11.24)

So, the probability of measuring zero hippos is modelled with a binomial distri-
bution, where πi is the probability that yi = 0. Hence, 1 − πi is the probability that
we do not measure zero hippos. Just as for the ZIP model, πi is modelled in terms
of covariates Z and regression parameters γ ; see also Equation (11.20). To measure
a non-zero count, the ecosystem needs to cross a hurdle to produce a non-zero value
and the Poisson count process has to exclude the probability of zero values, which
we called a zero-truncated Poisson distribution in Section 11.2. So, the second part
in the above equation says that the probability of measuring a non-zero value equals
the probability that it is not a zero multiplied with the probability determined by
a zero-truncated Poisson. The mean of the Poisson distribution, μi, is modelled in
terms of covariates X and regression parameters β; see also Equation (11.18).

The next task is to find the optimal regression parameters γ and β. As with
the ZIP, a likelihood criterion is formulated using the probability function in Equa-
tion (11.24). Finding the regression parameters that optimise the log-likelihood is
a matter of numerical optimisation, and the required formulae can be found in
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Section 4.7.1 in Cameron and Trivedi (1998). The function hurdle from the pscl
package in R will do the hard work for you.

The difference between a ZAP and a ZANB is due to the assumption for the
distribution of the count data. If we assume a Poisson distribution, we end up with
a ZAP and if a negative binomial distribution is used, we get a ZANB. Justification
for the ZANB is extra overdispersion in the count data.

In Equations (11.22) and (11.23), we formulated the mean and variance for the
ZIP and ZINB. For the ZAP, these are as follows.

EZAP(Yi ; πi , μi ) = 1 − πi

1 − e−μi
× μi

VarZAP(Yi ; πi , μi ) = 1 − πi

1 − e−μi
× (μi + μ2

i ) −
(

1 − πi

1 − e−μi
× μi

)2

And for the ZANB, we have

EZANB(Yi ; πi , μi , k) = 1 − πi

1 − P0
× μi whereP0 =

(
k

μi + k

)k

VarZANB(Yi ; πi , μi , k) = 1 − πi

1 − P0
×

(
μ2

i + μi + μ2
i

k

)
−

(
1 − πi

1 − P0
× μi

)2

The mean and variance can be used to calculate the Pearson residuals.

11.5.2 Example of ZAP and ZANB

The whole modelling process in two-part models is identical compared to mixture
models. First you need to decide whether you need a ZAP or ZANB. The best option
is to run them both and compare them with a likelihood ratio test. This can be done
with the following R code.

> H1A <- hurdle(f1, dist = "poisson", link = "logit",

data = ParasiteCod2)

> H1B <- hurdle(f1, dist = "negbin", link = "logit",

data = ParasiteCod2)

The command lrtest(H1A,H1B) produces a Chi-square statistic of 8752.50
(which is overwhelming evidence in favour of the negative binomial model) and the
command AIC(H1A, H1B), gives an AIC of 13687.59 for the ZAP and 4939.08
for the ZANB, confirming the choice for the ZANB. The summary(H1B) gives
the estimated parameters, but because the model has various nominal variables with
multiple levels, it is better to compare the full model H1B, with models in which
a particular term is dropped, and use the lrtest command to get one p-value
for the interaction term in the count model and in the binomial model. R code for
these analyses were provided in Section 11.4 and are not repeated here (the code
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can also be found on the book’s website). In the first round of model simplification,
length was dropped from the binomial model, and in the second (and last) round,
the Area × Year interaction term was dropped from the Poisson model. The code
and estimated regression parameters for the optimal ZANB model are as follows.

> fFinal <- formula(Intensity ∼ fArea + fYear +

Length | fArea*fYear )

> HFinal <- hurdle(f1, dist = "negbin", link = "logit",

data = ParasiteCod2)

> summary(HFinal)

Call:

hurdle(formula = f1, data = ParasiteCod2,

dist = "negbin", link = "logit")

Count model coefficients (truncated negbin with log

link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.366059 0.399420 8.427 < 2e-16

fArea2 0.379211 0.380945 0.995 0.31952

fArea3 -0.504376 0.312256 -1.615 0.10625

fArea4 0.893614 0.291517 3.065 0.00217

fYear2000 -0.040511 0.328434 -0.123 0.90183

fYear2001 -0.757718 0.688097 -1.101 0.27082

Length -0.037309 0.005867 -6.359 2.03e-10

fArea2:fYear2000 -0.639059 0.616450 -1.037 0.29989

fArea3:fYear2000 1.193440 0.494530 2.413 0.01581

fArea4:fYear2000 0.510433 0.476990 1.070 0.28457

fArea2:fYear2001 0.707730 0.819333 0.864 0.38770

fArea3:fYear2001 0.912374 0.775776 1.176 0.23956

fArea4:fYear2001 0.601263 0.746292 0.806 0.42043

Log(theta) -1.498146 0.239114 -6.265 3.72e-10

Zero hurdle model coefficients (binomial with logit

link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.085255 0.295071 0.289 0.7726

fArea2 -1.321373 0.285258 -4.632 3.62e-06

fArea3 -1.449183 0.243885 -5.942 2.81e-09

fArea4 0.300728 0.271105 1.109 0.2673

fYear2000 0.395069 0.343817 1.149 0.2505

fYear2001 -2.652010 0.433404 -6.119 9.42e-10

Length 0.006933 0.004655 1.489 0.1364

fArea2:fYear2000 -0.080344 0.507970 -0.158 0.8743

fArea3:fYear2000 0.870585 0.450277 1.933 0.0532

fArea4:fYear2000 0.864622 0.592387 1.460 0.1444
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fArea2:fYear2001 2.737488 0.532903 5.137 2.79e-07

fArea3:fYear2001 2.718986 0.499487 5.444 5.22e-08

fArea4:fYear2001 2.541437 0.518245 4.904 9.39e-07

Theta: count = 0.2235

Number of iterations in BFGS optimization: 29

Log-likelihood: -2442 on 28 Df

The difference between the optimal ZINB and ZANB is that length is not signif-
icant in the binomial part of the ZANB. For the rest, both models are the same in
terms of selected explanatory variables.

It is also interesting to compare the estimated parameters of the optimal ZINB
and ZANB models. For the count part of the model, the sign and magnitude of the
significant parameters are very similar. Plotting the fitted values as in Fig. 11.7 gives
a similar graph. Hence, the biological conclusions for the count part are similar. For
the binomial part of the model, things look different, at least in the first instance.
However, the p-values of corresponding terms in both tables give the same message.
The magnitudes of the significant parameters are similar as well. It is only the sign of
the regression parameters that are different. But this is due to the opposite definition
of the πs in both methods!

In summary, for the cod parasite data, the ZINB and ZANB give similar parame-
ter estimates. The difference is how they treat the zeros. The ZINB labels the exces-
sive number of zeros (which occur at small fish and in certain areas in particular
years) as false zeros, whereas the ZANB models the zeros versus the non-zeros (and
identifies the area × year interaction as a driving factor for this), and the non-zeros
with a truncated NB GLM jointly.
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Fig. 11.7 Fitted curves for the count model. The vertical axis shows the expected counts (assuming
a ZINB distribution) and the horizontal axis length of cod. Each line corresponds to an area and
year combination
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11.6 Comparing Poisson, Quasi-Poisson, NB, ZIP, ZINB,
ZAP and ZANB GLMs

In the previous sections and chapters, we applied Poisson, quasi-Poisson, NB GLM,
ZIP, ZINB, ZAP, and ZANB models on the cod parasite data. The question is now:
What is the best model? There are many ways to answer this question.

Option 1: Common Sense

The first option is common sense. First, you should decide whether there is overdis-
persion. If there is no overdispersion, you are lucky and you can stick to the Poisson
GLM. If there is overdispersion, ask yourself why you have overdispersion; outliers,
missing covariates, or interactions are the first things you should consider. Small
amounts of overdispersion can be modelled with quasi-Poisson. Let us assume that
this is not the case. Do you have overdispersion due to excessive number of zeros
or due more to variation in the count data? Make a frequency plot of the data and
you will know whether it is zero inflation. If there is zero inflation, go the route of
ZIP, ZAP, ZINB, and ZANB. If the overdispersion is not caused by excessive num-
ber of zeros, but due to more variation than expected by the Poisson distribution in
the positive part of the count data, use the negative binomial distribution. In case
of zero inflation and extra variation in the positive count data, use ZINB or ZANB.
The choice between ZINB and ZANB (or ZIP and ZAP) should be based on a priori
knowledge of the cause of your excessive number of zeros.

Option 2: Model Validation

A second option to help decide on the best model (if there is such a thing) is to plot
the residuals of each model and see whether there are any residual patterns. Drop
each model that shows patterns in the residuals.

Option 3: Information Criteria

Another option is to apply all methods and print all estimated parameters, standard
errors and AICs, BICs, etc. in one big table. Compare them, and based on the AICs,
judge which one is the best. You can find examples of this approach in most books
discussing these statistical methods.

Option 4: Hypothesis Tests – Poisson Versus NB

Formal hypotheses tests can be used to choose between Poisson and negative bino-
mial models as these are nested. This also holds for ZIP versus ZINB and ZAP
versus ZANB.
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Option 5: Compare Observed and Fitted Values

Potts and Elith (2006) compared the fitted and observed values of all the models. To
assess how good each technique predicts the fitted values, they used various tools.
For example, high values of the Pearson correlation coefficient and Spearman’s rank
correlation between fitted and observed values mean that these are similar.

It is also possible to apply a linear regression model of the form Observedi = α +
β × Fittedi + εi, where Observedi are the observed data and Fittedi the fitted values
of a particular method. An estimated intercept of 0 and slope of 1 indicates a perfect
fit. Potts and Elith (2006) discuss the interpretation of non-significant slopes.

Other ways to quantify how similar the observed and fitted values are the root
mean square errors and mean absolute error (where error is defined as the difference
between the observed and fitted values).

All these statistics are discussed in Potts and Elith (2006) and require bootstrap-
ping. We implemented their algorithm, and the results are presented in Table 11.3.
Note that the Pearson correlation coefficients and the Spearman rank correlations
of all five methods are nearly identical. The ZANB is the only model that gives an
intercept of 0. The AIC of this model is also the lowest, and therefore based on these
numerical tools, the ZANB can be selected as the best possible model.

Another approach to compare (and select) models is discussed in Ver Hoef and
Boveng (2007), who plotted the variance versus the mean and the weights that are
used inside the algorithm versus the mean.

Instead of sticking to one of these five methods, you may need multiple
approaches to arrive at the best model. The hypothesis testing approach showed
that an NB model is preferred above the Poisson GLM. A frequency plot indicated
zero inflation; hence, we should apply a ZINB or ZANB. A discussion with one of
the involved researchers revealed that we have both false and true zeros. We can
either try to determine the contribution from each of these (with a ZINB) or just
consider them as zeros and use the ZANB. So, the choice between the ZINB and
ZANB depends on the underlying questions with regards to the zeros. If you close
your eyes and compare the ZINB and ZANB, then the latter should be selected as
judged by the AIC.

Table 11.3 Model comparison tools for the Poisson GLM, quasi-Poisson GLM, NB GLM, ZINB,
and ZANB models. The Pearson correlation coefficient (r), Spearman rank correlation (p), intercept
and slope (of a linear regression of observed versus fitted), RMSE, MAE (mean absolute error),
AIC, log likelihood and degrees of freedom (df).

Model r p Intercept Slope RMSE MAE AIC Log lik Df

Poisson 0.33 0.36 0.32 0.96 18.60 7.50 20377.86 –10175.93 13
Quasi-Poisson 0.33 0.36 0.32 0.96 18.63 7.50 NA NA 13
NB GLM 0.34 0.37 –0.20 1.07 18.49 7.42 5030.67 –2501.33 14
ZINB 0.33 0.37 0.30 0.96 18.57 7.49 4954.89 –2450.44 27
ZANB 0.34 0.37 –0.06 1.04 18.47 7.47 4937.08 –2441.54 27
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11.7 Flowchart and Where to Go from Here

In this chapter, we have discussed tools to analyse zero-inflated models, resulting in
four extra models (ZIP, ZAP, ZINB and ZANB) in our toolbox for the analysis of
count data. Mixture models and two-part models should be part of every ecologist’s
toolbox as zero inflation and overdispersion are commonly encountered in ecologi-
cal data. If you are now confused with the large number of models to analyse count
data, Fig. 11.8 will help you to visualise the difference between some of the models
discussed in Chapters 9, 10, and 11.

So, where do we go from here? In Chapters 12 and 13, we concentrated on mod-
els that allow for correlation and random effects in Poisson and binomial GLMs and
GAMs. These models are called generalised estimation equations (GEE), gener-
alised linear mixed modelling (GLMM), and generalised additive mixed modelling
(GAMM). At the time of writing this book, software for GEE, GLMM, and GAMM
for zero-inflated data consists mainly of research or publication specific code. By
this, we mean that papers using random effects or spatial and temporal correla-
tions structures in combination with zero inflation are now being published (e.g. Ver
Hoef and Jansen, 2007), but general software code is not yet available. So, a bit
of challenging R programming awaits you, should you want to model zero-inflated
GLMMs.
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Fig. 11.8 GLMs for count data. Instead of GLM, you can also use GAM. Try sketching in the
R functions for each box. If there is no zero truncation, no zero inflation and no overdispersion
(upper right box), you can apply a Poisson GLM. If there is overdispersion (upper middle box),
then consider quasi-Poisson or negative binomial GLM. The ‘#successes out of N trials’ box refers
to a logistic regression. The trials need to be independent and identical. For zero-truncated data
(lower right box), you need to apply a zero-truncated Poisson GLM or a zero-truncated negative
binomial GLM. If there is zero inflation, you are in the world of ZIP, ZAP, ZINB, and ZINB
models. The difference between the P and NB is whether there is overdispersion in the non-zero
data. It is a nice exercise to add the names of the corresponding R functions! You can also use the
offset in the ZIP, ZAP, ZINB, and ZANB models




