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CHAPTER SEVEN 

The Confrontation: Likelihood 
and Maximum Likelihood 

OVERVIEW 

The method of sum of squares can be used to find the 
best fit of a model to the data under minimal assumptions 
about the sources of uncertainty. Furthermore, goodness-of­
fit profiles and bootstrap resampling of the data sets allow 
us to make additional inferences about the competition be­

tween different models. All of this can be done without as­
sumptions about how uncertainty enters into the system. 
However, there are many cases in which the form of the 
probability distributions of the uncertain terms can be justi­
fied. For example, if the deviations of the data from the 
average very closely follow a normal distribution, then it 
makes sense to assume that the sources of uncertainty are 
normally distributed. 

In such cases, we can go beyond the sum of squares and 
use the methods of maximum likelihood, which are dis­
cussed in this chapter. The likelihood methods discussed 
here allow us to calculate confidence bounds on parameters 
(something we could not do with the sum of squares), and 
to test hypotheses in the traditional manner. In addition, 
likelihood forms the foundation for Bayesian analysis, which 
is discussed in Chapter 9. 

In this chapter, we use the probability distributions dis­
cussed in Chapter 3 to (i) find parameters of a given model 
that provide the best fit to the data (called maximum likeli­

hood estimation), (ii) compare alternative hypotheses (by 
using the likelihood ratio test or its generalization to non-
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CHAPTER SEVEN 

nested models), and (iii) calculate confidence bounds 
(using the method of the likelihood profile). We now intro­
duce these methods. 

LIKELIHOOD AND MAXIMUM LIKELIHOOD 

For any of the probability distributions considered in 
Chapter 3, the probability of observing data Vi, given a par­
ticular parameter value p, is 

Pr{li Ip}. (7.1) 

The subscript on Yi indicates that there are many possible 
outcomes (for example, i = 1,2, ... I), but only one param­
eter p. For example, suppose that Yi follows a Poisson distri­
bution with rate parameter r. Then in one unit of time we 
predict that Yi = k with probability 

Pr{Yi = k I rate parameter = r} 
k! (7.2) 

This expression is also the probability of the "data" given 
the "hypothesis," where the "data" are k events in one unit 
of time and the "hypothesis" is that the rate parameter is r. 

When confronting models with data, we usually want to 
know how well the data support the alternative hypotheses. 
That is, after collection, the data are known but the hypoth­
eses are still unknown. We ask, "Given these data, how likely 
are the possible hypotheses?" 

To do this, we introduce a new symbol to denote the "like­
lihood" of the data given the hypothesis: 

~{data I hypothesis} or (7.3) 

Note the subtle shift in going from Equation 7.1 to Equa­
tion 7.3: Y has no subscript because there is only one obser­

vation, but now the parameter is subscripted because there 
are alternative parameters (hypotheses); for example, we 
might have m = 1,2, ... , M. 
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LIKELIHOOD AND MAXIMUM LIKELIHOOD 

The key to the distinction between likelihood and proba­
bility is that with probability the hypothesis is known and 
the data are unknown, whereas with likelihood the data are 
known and the hypotheses unknown. In general, we assume 
that the likelihood of the data, given the hypothesis, is pro­
portional to the probability Equation 7.1 (Edwards 1992), so 
the likelihood of parameter Pm' given the data Y, is 

(7.4) 

Also, in general, we are concerned with relative likeli­
hoods because we mostly want to know how much more 
likely one set of hypotheses is relative to another set of hy­
potheses. In such a case, the value of the constant c is irrele­
vant and we set c = 1. Then the likelihood of the data, 
given the hypothesis, is equal to the probability of the data, 
given the hypothesis. Note that although it must be true 
that if the parameter P is fixed 'L; = I Pr{Yilp} = 1, when 
the data Yare fixed, the sum over the possible parameters 
'L~ = 1 .;£{Ylp~ need not even be finite, let alone equal to 1. 
It may be helpful to think of likelihood as a kind of unnor­
malized probability. 

For example, suppose that the data were k = 4 events in 
one unit of time. For the Poisson model, Equation 7.2, the 
likelihood is 

(7.5) 

If the data were six events in one unit of time, then 

e- rr6 
.;£{6Ir} = 6! . 

(7.6) 

By plotting the likelihood as function of r (Figure 7.1a), 
we get a sense of the range of parameters for which the 

observations are probable. When looking at this figure, re­
member that the comparisons are within a particular value 
of the data and not between different values of the data. For 
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FIGURE 7.1. (a) The likelihood :E{klr) e-'r"/k! for k = 4 and 6. (b) The 
likelihood ratio '£{klr}/:E{klr*}, where r* is the value of the parameter 
that maximizes the likelihood, for k = 4 and 6. (c) The negative log­
likelihoods. 
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this reason, it is often helpful to scale the likelihoods rela­

tive to the parameter value that makes the likelihood as 
large as possible (Figure 7.1b). For example, when k = 4, 
we see that the most likely value of the parameter is r = 4, 
and that values of r in the range [2,7] are at least half as 
likely as the most likely parameter. Similarly, when k = 6, 
the most likely value of the parameter is 6 and values of r in 
the range [4,10] are at least half as likely as the most likely 
parameter. The parameter that makes the likelihood as 

large as possible is called the maximum likelihood estimate 
(MLE). 

Because likelihoods may be very small numbers, the tradi­
tion is to use the logarithm of the likelihood, called the log­

likelihood, for comparisons. This is also called the suppmt 
function (Edwards 1992). 

In analogy to the sum of squares, we use the negative of 
the logarithm of the likelihood, so that the most likely value 

of the parameter is the one that makes the negative log­

likelihood as small as possible: 
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CHAPTER SEVEN 

L{data I hypothesis} 
- log(.:£{data I hypothesis}). (7.7) 

Then the hypothesis with the most "support from the data" 
has the smallest value of L{data I hypothesis}. For the case 
we are considering (Figure 7.1c), the maximum likelihood 
values are r* = 4 and r* = 6 for k = 4 and 6, respectively, 
and it can be seen that these make the negative log-likeli­
hood as small as possible. Thus, we can use the likelihood to 
decide which hypothesis is most consistent with the data. 
Schnute and Groot (1992) give a nice summary of inference 
based on the negative log-likelihood function. 

Multiple Observations 

We often have multiple observations of different types of 
data. Since likelihoods are determined from probabilities, 
the likelihood of a set of independent observations is the 
product of the likelihoods of the individual observations. 
Thus, 

and since logarithms are additive, the negative log-likeli­
hoods add: 

L{YJ,Y2,Y3 Ip} = L{Y1Ip} + L{Y2 Ip} + L{Yglp}. (7.9) 

Thus, likelihood allows the inclusion of different types of 
information in a single framework. If a model predicts sev­
eral different types of observations, we can use likelihood to 
determine the extent to which the model is consistent with 
all of the observations. 

Maximum Likelihood and Sum of Squares May & the Same 

One interesting feature of the normal distribution is that 
the negative log-likelihood and the sum of squares will be 
minimized at the same values of the parameters. To see this, 
we begin with the likelihood for n observations {Yi } which 
follow a normal distribution with mean m and variance (12: 
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LIKELIHOOD AND MAXIMUM LIKELIHOOD 

n n 1 (Yi - m)2) ~{Ylm,a} = _,- exp - 2 . 
i = 1 a'l2'lT 2a 

The negative log-likelihood is 

L{Ylm,a} 
n 

1 "" (Yi - m)2 

(7.10) 

n[log(a) + "2 log(2'lT)] + £.J 2a2 
i=1 (7.11) 

To find the value of m that minimizes L, notice that 
n[log(a) + (1/2)log(2'lT)] does not depend on m. There­
fore, the value of m that minimizes the negative log-likeli­
hood will be one that minimizes the sum on the right-hand 
side, which is the square deviation between the predicted 
(m) and observed (Yi ) values. Many of the familiar prob­
lems in regression and analysis of variance assume normal 
distributions, and therefore the estimated parameters will 
be the same using sum of squares or maximum likelihood. 

Calculating Averages Using Maximum Likelihood 

As an easy introduction to how to use maximum likeli­
hood, let us consider the following set of data. Suppose that 
the heights (in cm) of ten people are 171, 168, 180, 190, 
169, 172, 162, 181, 181, and 177. Also assume that we know 
that height is normally distributed with standard deviation 
10 cm. Therefore the likelihood of any individual height Y, 
if the true mean of the population is m, is 

1 ( Y - rn) 2 ) 
~{Ylrn} = 10..j2'lT exp - 200 ' (7.12) 

and the negative log-likelihood for 10 of the ten heights is 

L{YI rn} 

1 ~ (Yi - m)2 
n[log(1O) + "2 log(2'lT)] + £.J 200 

i= 1 (7.13) 
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FIGURE 7.2. The negative log-likelihood (scaled so that the minimum is at 
0) for the average height of the population when 2, 4, 7, or 10 observations 
are used. 

Figure 7.2 shows the negative log-likelihood for different 
values of m for the data set using the first 2, 4, 7, and finally 
all 10 observations. In all cases, the minimum L has been 
subtracted from the L so that they are all plotted with 0.0 as 
a minimum. When we use only two data points, the curve is 
very flat, that is, the alternative hypotheses about m have 
similar likelihoods. As the number of data points used in­
creases, the negative log-likelihood becomes steeper, which 
indicates that we have more confidence in our knowledge 
about m. Later in this chapter, we show how to find confi­
dence intervals from L. 

DETERMINING THE APPROPRIATE LIKELIHOOD 

At this point, you may ask, "Given data and hypotheses, 

what likelihood function should I use?" If you find yourself 
in this position, then you have not completely specified the 
model. In particular, you may have a deterministic model 
but not a stochastic one, because a fully specified stochastic 
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LIKELIHOOD AND MAXIMUM LIKELIHOOD 

model contains a hypothesis about the way in which ran­
domness enters into the system. If you have not done so, 
you should return to Chapter 3 and formulate hypotheses 
about the stochastic components of your model. Ask ques­
tions such as: Is there process uncertainty? If so, what kind 
of distribution is appropriate? Is there observation uncer­
tainty? If so, what kind of distribution is appropriate? 

This choice is often made on first principles from the ba­
sic distributions described in Chapter 3. For instance, when 
dealing with simple proportions, the binomial distribution 
naturally might occur. Data that fall into several possible cat­
egories can be described by a multinomial distribution. 
Counts of rare events could be Poisson or negatively binomi­
ally distributed. Quantities that result from the sum of 
events are often normally distributed, and quantities that re­
sult from a series of multiplicative probabilities frequently 
are log-normal. 

You may be able to use the data to distinguish between 
different probability models for the stochasticity in your sys­
tem. Different probability models can be thought of as com­
peting hypotheses in exactly the same way that different pa­
rameter values are competing hypotheses. Remember that 
the model consists not only of the deterministic equations, 
but also of the assumptions about randomness. More simply, 
examine the residuals, as we did in Chapter 4, to see if there 
is a systematic pattern to the difference between the model 
and the data. For example, if the residuals are symmetri­
cally distributed, the normal distribution may be appropri­
ate, but strong skewness in residuals suggests a log-normal 
distribution. 

Observation and Process Uncertainty 

To illustrate the distinction between observation and pro­

cess uncertainty, imagine a population growth process. If 
there is only observation uncertainty, then the population 
dynamics (births and deaths) will be deterministic, but we 
are unable to accurately estimate population abundance. 
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Observation uncertainty does not propagate in time. If we 
underestimate the population in one year, it does not affect 
the population the next year (the organisms do not know if 
we overcount or undercount them). As long as our observa­
tion uncertainties are independent from year to year, we will 
be just as likely to overestimate or underestimate the popu­
lation next year. 

If we have process uncertainty but not observation uncer­
tainty, then we estimate population size perfectly (as in 
many laboratory populations), but the processes of birth 
and death have random components. If the process uncer­
tainty reduces population size in one year (due to poor 
births or survival), then the population will be smaller the 
next year; process uncertainty will propagate over time. 

Suppose that we observe a system in which the variable Y 
depends linearly on the independent variable X We might 
begin by writing 

(7.14) 

In this equation, Po and PI are the parameters to be deter­
mined from the data, and W is the process uncertainty (for 
simplicity, we will not subscript the variables by time or ob­
servation number in this section). Now let us explicitly rec­
ognize that the observed values of the independent and de­
pendent variables, Xobs and Yobs> respectively, also involve 
observation uncertainty by writing 

Yobs = Y + VI> 

(7.15) 

where VI and V2 are the observation uncertainties. We com­
bine Equations 7.14 and 7.15 as 

Yobs = Po + PI X + W + VI 

= Po + PI(Xobs - V2) + W+ VI 

= Po + PIXobs + Z, (7.16) 
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FIGURE 7.3. The four "observations" represent a possible set of data relat­
ing Y to X The horizontal line is the interpretation if we believe that X is 
measured perfectly but that there is process uncertainty. The vertical line is 
the intepretation if we believe that there is no process uncertainty, but that 
X is measured imperfectly. 

where Z = W + VI - PI V2 is the "total uncertainty." This is 
the regression equation usually encountered in statistics 
books, where it is typically assumed that X is observed per­
fectly and that Y is subject to process uncertainty. 

Why should one think about the sources of uncertainty, 
particularly to separate process and observation uncertainty, 
when it is possible to use the last line of Equation 7.16 and 
ignore the issue entirely? Schnute (1987) illustrates the im­
portance of thinking about the sources of uncertainty. Sup­
pose we have four measurements (Figure 7.3). If we believe 
that there is no observation uncertainty (VI = V2 = 0) but 
only process uncertainty, then the horizontal line is the ap­
propriate interpretation of the data. In such a case, we as­
sert that Y is independent of X, but because of process un­
certainty we observe different values for Yat different values 
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CHAPTER SEVEN 

of X. On the other hand, if we believe that the only uncer­
tainty occurs with the observation of X (VI = W = 0), then 
the vertical line is the interpretation. We then assert that X 

is constant, but measured with uncertainty. 
This example, of course, is contrived and most of us 

would not attempt to draw many conclusions from four data 
points, especially if they looked like the ones in Figure 7.3. 
On the other hand, the example does show how our inter­
pretation of the data depends on our belief about how ran­

domness is represented in the data. In any comparison of 
models. the results depend not only on what is actually in 
the data, but also upon how we believe uncertainty enters 
into the data. It is always better to recognize such limitations 
from the outset. 

When only observation or process uncertainty is present, 
we can estimate the amount of variation from the data. For 

example, in a standard linear regression (Equation 7.16) we 
assume no observation uncertainty and usually estimate the 
slope, the intercept, and the variance of the process uncer­
tainty. However, when X is measured imprecisely, it is impos­
sible to estimate the variances of both the observation and 
process uncertainties. In particular, if both observation and 
process uncertainty are present, we must either specifY the 
variance of one of the two, or we must specifY the ratio of 
the variances (Schnute 1987). However, even once we spec­
ifY one of the variances or the ratio of variances, the joint 
estimation of observation and process uncertainty is com­

putationally difficult and frequently ambiguous. We recom­
mend the following: 

1. Whenever possible. conduct independent experiments 
to determine the magnitude of observation and pro­
cess uncertainties so that you will not have to estimate 
these from the data used in the comparison of models. 

2. If possible, eliminate observation uncertainty by good 

experimental design or instrumentation. 
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3. Compare models and/or estimate parameters using 
the alternative, extreme assumptions of no observation 
uncertainty or no process uncertainty. 

4. If there is little difference between your conclusions 
using the different assumptions in step 3, you can stop 
worrying about the issue. If, however, there are major 
differences in the results of the analysis depending on 
the assumption in step 3, you must either delve deeply 
into the statistical literature on the subject (Schnute 
1987 is a good starting point) or redesign the experi­
ments and try again. 

Likelihoods for Observation and Process Uncenainty 

While simultaneous estimation of process and observation 
uncertainty can be complex, the special cases in which only 
one is present can be analyzed in a straightforward manner. 

We begin with a general deterministic model for Y, based 
on independent variables X and parameters p, 

Ydet = f(X,p) (7.17) 

where f(X,p) is assumed to be known. Now assume that the 
observed value of Y depends on the deterministic value and 
the process uncertainty W, so that 

(7.18) 

The deviation D between the observed and predicted (de­
terministic) values of the dependent variable is 

(7.19) 

Thus, the probability distribution of the deviation is ex­
actly the same as the probability distribution W For exam­
ple, if W is normally distributed, the negative log-likelihood 
(using t as a subscript for individual observations of X and 
Y) is 

L I () 11 (2) + [Yob,t - f(Xt ,p)]2 
t = og (J" + -2 og 'IT 2(J"2 (7.20) 
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Now assume that X is measured imprecisely but that Y is 
measured exactly. In that case, the statistically interesting 
questions involve the value of X, which is related to Y 

through the inverse function 

(7.21 ) 

For example, if Y = pX, then 

-1 Y 
f (Y.P) = p' (7.22) 

That is, the inverse function involves "solving for x in terms 
of y." This cannot always be done explicitly, and in some 
cases-involving nonlinear functions-the inverse function 
may not exist at all. 

The observed value of X is then 

(7.23) 

where Vis the observation uncertainty. Given Y, we calculate 
the predicted value of X (remember the model is determin­
istic), and the difference between the observed X and the 
predicted value from the inverse model is the value of the 
observation uncertainty. For example, if V were normally 
distributed with mean 0 and variance 0"2, the negative log­
likelihood would be 

(7.24) 

Linear regression models are a special case of this analysis 
in which there is a straightforward inverse model. For a lin­
ear regression, 

the inverse model is 

Y - PI 
P2 
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An ecological example of the linear regression Equation 
7.25 is the simple model of population dynamics with sur­
vival (s) and births (b), process (Wt ), and observation uncer­
tainties eY;) that are normally distributed with mean 0 and 
variance (J w or (J V> respectively: 

(7.27) 

When there is only process uncertainty, Nt is measured 
perfectly and the only stochastic element affects Nt+ 1. The 
negative log-likelihood is 

L t = log(aw) 

(7.28) 

On the other hand, if we assume only observation uncer­
tainty, we use the inverse function method to write 

and the negative log-likelihood is 

1 
L t = log(av) + '2log(21l') 

[Nobs t + b/ s - (1/ s) Nobs,t+ }]2 + . 
2a/ 

(7.29) 

(7.30) 

The likelihoods in Equations 7.28 and 7.30 refer to only a 
single time period. The natural next question is: What 
should be done when time periods are linked? 

Considerations for Dynamic Models 
The ecological detective often deals with observations 

that are a time series about the state of the system and per­
turbations to the system. Such time series commonly arise in 
wildlife, fisheries, and forestry. When the data are a time 
series, the model must perforce be a dynamic one in which 

145 

This content downloaded from 134.88.243.67 on Thu, 02 Feb 2017 20:14:39 UTC
All use subject to http://about.jstor.org/terms



CHAPTER SEVEN 

the state of the system at a given time is linked with its 
values at previous times. In this section, we shall illustrate 
the special considerations that arise in such a case. To illus­
trate the ideas, we use the discrete logistic equation 

Nt+ 1 = Nt + rNt ( 1 - i ) . 
(7.31) 

In this equation, Nt is the population size at time t, 1° is the 
maximum possible per capita growth rate, and K is the car­
rying capacity. We can include additions or removals (Ct ) 

from the population to obtain 

(7.32) 

Next, we must specify the nature of the observation and 
process uncertainty for this model. When the logistic model 
is used in practice, it is commonly (although certainly not 
universally) assumed that both observation and process un­
certainties are log-normally distributed. This means, for ex­
ample, that we assume that the observation is 

v = exp ( mv _ u;2 ) , 
(7.33) 

where Z is normally distributed with a mean of zero and a 
standard deviation of 1, and Uv is the standard deviation of 
the observation uncertainty (see Equation 3.68 ff. to justify 
the formulation). 

Process uncertainty is included in a similar manner: 

(7.34) 

A scenario described by this model might be the discovery 
of a previously unfished resource, its overexploitation, and 
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subsequent reductions in catch to correct the problem. To 
describe this situation, we could use the Monte Carlo 
method to generate data in ten time periods (starting with 

an unperturbed population), allow harvesting of half of the 
population at times 3, 4, and 5 (the overexploitation), and 
reduce the harvest rate to almost zero for the last four time 
periods (the "management action"). 

Assuming the parameters r = 0.5, K = 1000, <Tw = 0.1, 
and <Tv = 0.1, a pseudocode is: 

Pseudocode 7.1 

1. Input values of the parameters T, K, <Tw, and <T". 

2. Set the initial value of population at K. 

3. Calculate population size next year based on the logistic 

equation with process uncertainty, harvesting half of the 

population at times 3, 4, and 5. 

4. Calculate the observed population at each time period. 

5. Repeat steps 3 and 4 for ten years. 

The Monte Carlo method provides a trajectory of popula­
tion size over time (Figure 7.4). Assuming only observation 
uncertainty means that we should use Equation 7.33. The 
deviation between the observed and true values of the log­
arithm of population size is 

and using Equation 7.33, 

2 <Tv 
Dt = [log(Nt ) + log(V)] - 10g(Nt ) + 2 

<Tl 
10g(V) + 2 

( <Tl) Z<Tv - 2 

(7.35) 

(7.36) 
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FIGURE 7.4. The Monte Carlo data (squares) for the logistic model Equa­
tion 7.34. The harvest rate is 50% during periods 3, 4, and 5. and 0.01 at 
other times. The line shows the best fit of the model assuming observation 
uncertainty. The estimated parameters are r = 0.47 and K = 960. 

Thus, D t is normally distributed with mean 0 and variance 
CT~, so that the likelihood of a deviation of size dt is 

:£ = -J 1 2 exp (- dt22 ) , 
27l"CTv 2CTv (7.37) 

and the negative log-likelihood for the observation at time t is 

1 d/ 
L t = 10g(CTv) + "2 log (27l") + 2CTv2 • (7.38) 

This is analogous to Equation 7.28. The negative log-likeli­
hood for all of the data (across multiple periods) is the sum 
of the L t from Equation 7.38 

Given the data and particular values of r, K, and CTv, we 
can evaluate the likelihood of that set of parameters. Alter­
natively, we can select the parameters that make the nega­
tive log-likelihood as small as possible and call these the 
"best-fit" parameters. A pseudocode to do these calculations is: 
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Pseudocode 7.2 

1. Input data values for observed population size. 

2. For specified values of rand K, systematically search over 

individual rand K values and generate predicted 

deterministic population sizes using Equation 7.32. 

3. Calculate the deviation at each time period using 

Equation 7.36. 

4. Calculate the negative log-likelihood of the deviations 

using Equation 7.38. 

5. Sum the L t over t to obtain the negative log-likelihood 

for the combination of rand K in question. 

6. See which values of rand K lead to the smallest total 

likelihood. 

By implementing this pseudocode, we predict a determin­
istic trajectory of the population conditioned on the param­
eters of the model and the starting population size (Figure 
7.4). We assumed that the population is initially at carrying 
capacity; if one does not know that No = K, the starting 
population size must also be estimated. 

If there is only process uncertainty, the dynamic model 
becomes 

Nt+ 1 = YV;{Nobs,t + rNobs,t[l - (Nobs,11 K)] - CJ, 

Wt = exp ( Zuw _ u/ ) . 
The deviation is defined in a similar manner: 

10g(YV;) -
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The key ditTerence between the deviations in Equations 7.36 
and 7.40 is that in Equation 7.40 the predicted value de­

pends on the obseroed value in the previous time period, 
rather than on the predicted value in the previous time pe­

riod. The negative log-likelihood for a single period is anal­
ogous to Equation 7.38: 

(7.41) 

Once again, we can find the values of rand K that give 
the best fit to the data. To do so, we need a different pseu­
docode: 

Pseudocode 7.3 

l. Input the data values for observed population size. 

2. For specified values of rand K, generate predicted 

population sizes using Equation 7.39. 

3. Calculate the deviation at each time period using 

Equation 7.40. 

4. Calculate the negative log-likelihood of deviations using 

Equation 7.41. 
5. Sum L, across t to obtain the negative log-likelihood for 

the combination of rand K in question. 

6. See which values of rand K lead to the smallest total 

likelihood. 

The results (Figure 7.5) show that assuming only one 

kind of uncertainty provides a reasonably good fit to the 
data, although clearly neither of these models is "correct." 

This is gratifying, since the two assumptions that we consid­
ered are the "extremes" that bracket the tme situation. As a 

general mle, when the data are informative, the assumption 
about how uncertainty enters does not matter greatly. In 

practice, the assumptions of only observation uncertainty or 

only process uncertainty have specific strengths and weak­
nesses. For instance, in order to use the assumption of pro-
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FIGURE 7.5. The same Monte Carlo data as in Figure 7.4 and the fit of the 
model assuming process uncertainty. The estimated parameters are r = 
0.44 and K = 1023. 

cess uncertainty, we should observe each state variable at 

each occasion; otherwise the computation of the predicted 

value at future times becomes much more complex. In con­
trast, the assumption of only observation uncertainty makes 
no specific requirements about how much of the state can 
be observed, nor how often it is observed. The likelihood 
can be calculated from a single observation at any time. The 
major limitation of the observation uncertainty assumption 
is the need to specify the starting state. For example, above 
we assumed that Nr,) = K. If we did not have this additional 
information, we would have to estimate an additional pa­

rameter, Nr,). 
The importance of the starting condition is accentuated 

when the model exhibits chaotic behavior, since the time 

trajectory of a chaotic model is highly sensitive to the start­
ing conditions. In practice (Adkison 1992), estimators based 

on observation uncertainty cannot be used in chaotic 

models. Many models, including the discrete logistic, can 
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exhibit chaotic behavior over some range of parameters, im­
plying that particular care is needed in formulation. Estima­
tors based on observation tend to have trouble when deal­

ing with long, complex time series of data. Since the 
observation estimator is deterministically predicted from ini­
tial conditions, if the time series has numerous changes due 

to random processes, observation-fitting procedures are of­

ten unable to capture the essence of the dynamics, and thus 
may provide poor estimates. 

An additional problem for the ecological detective who 
works with time series is the lack of independence of the 
observations. Unlike true experimental situations in which 
the experimenter controls the state of the system, when 
working with time series the most we can hope for are infor­

mative perturbations. The data from one time to the next 
are not independent, and biases in parameters may be in­
troduced. In practice, it is rarely possible to calculate a bias 
correction factor, and we recommend the use of Monte 
Carlo simulations to explore the sensitivity of results to the 
time series bias. Such simulations can be accomplished by 
taking the parameters estimated from the data, using them 
as "true" values in a Monte Carlo model, generating a few 
hundred data sets, and then seeing how accurately one can 
estimate the "tnle" parameters. 

MODEL SELECTION USING LIKELIHOODS 

We are now ready to consider the resolution of the con­
test between different models for the same phenomenon, 

arbitrated by the data, using likelihood as the criterion. 
Imagine a number of models M I , M2, ••. , in which model 

Mi has parameters Pil,Pi2, ... , and that we have deter­
mined the best-fit values of the parameters. In most situa­

tions, a model will rarely win the contest outright, but rather 
each additional experiment or observation changes our rel­
ative belief in competing models. The treatment of relative 
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belief is covered in Chapter 9 on Bayesian methods. How­
ever, in many applications, and for many scientific journals, 
we must decide a winner in the contest; that is, we must 
choose which model appears to be "best" given the available 
data. 

In the discussion that follows, we shall use the words 
"model" and "hypothesis" interchangeably. The first princi­
ple we use is that of likelihood, which quantifies how consis­
tent a particular hypothesis is with the observations. As a 
general rule, the best model is the one that has the highest 
likelihood. When we have many competing hypotheses with 
the same number, of parameters, the hypothesis with the 
highest likelihood is the "best" one. For example, in a re­
gression model, different slopes and intercepts are compet­
ing hypotheses, and the slope and intercept that have the 
highest likelihood are the best estimates of the true slope 
and intercept. An interesting evolutionary application of 
model selection using likelihood is the work of Sanderson 
and Donoghue (1994) in a study of the origin of 
angiosperms. 

The Likelihood Ratio Test for Nested Models 

Commonly, the competing models do not have the same 
number of parameters, and a model with more parameters 
has an intrinsic advantage in being able to fit data. How do 
we referee a contest between unequal competitors, for ex­
ample, between a model with one parameter and a model 
with two parameters? Here we rely on a second principle, 
known as the likelihood ratio test. The likelihood ratio test 
is based on the following result from theoretical statistics 
(Kendall and Stewart 1979, 240 ff.). Imagine two nested 
models, A and E, in which B is the more complicated 
model. That is, model B has more parameters and collapses 
to model A when some of them are set equal to O. Denote 
the data by Y and the negative log-likelihoods of the data, 
given the models, by L{YIMA } and L{YIMB}. We assume that 
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the more complicated model fits the data better, so that 
L{YIMA } > L{YIMB}· 

The result of statistical theory is that 

(7.42) 

has a chi-square distribution (refer to Chapter 3), with the 
degrees of freedom equal to the difference in the number 
of parameters between models B and A. Because the right­
hand side of Equation 7.42 involves log-likelihoods, CJJt is the 

ratio of the logarithm of the likelihoods, and this procedure 
is called the likelihood ratio test. 

It is perhaps easiest to understand how Equation 7.42 is 
used for the case of comparing the likelihood associated 
with a maximum likelihood estimate (MLE) parameter with 
the likelihood for other values of the parameters. We re­
place L{YIMB} with L{YIPMLE} and L{YIMA } with L{Ylp}, 
where p is another value of the parameter. The difference 
CJJt(P) now has a chi-square distribution with one degree of 
freedom, because we have one fitted parameter. If we plot 
the probability that CJJt(P) is less than z as P varies, we obtain 
a function that is symmetric around hllE and which is zero 
when P = PMLE (Figure 7.6). The thin parabolic line is the 
difference in log-likelihood between /JMLE and p. The thick 
funnel-shaped line is the probability that the X2 random 
variable is less than z = (P - PMLE) 2. This plot rises to 1 as 
the difference between p and PMu: increases. We construct 
confidence intervals by noting that pr{l < 3.84} = 0.95. 

Consequently, if model B has one more parameter than 
model A, twice the difference in negative log-likelihoods 

must be greater than 3.84 for model B to be significantly 
better at the 0.05 level. We construct the confidence inter­

vals by drawing a horizontal line at the desired confidence 
level (e.g., 95%) and seeing where the line intersects the X2 
probability curve. In the case of Figure 7.6, we see that this 
occurs at p values of roughly 1 and 9. The likelihood ratio 
test allows us to examine models of increasing complexity to 
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FIGURE 7.6. The relationship between the negative log-likelihood and the 
l value used in the likelihood ratio test. The thin line is the difference in 
negative log-likelihoods between the best-fit parameter (PMLE = 5) and 
other values of the parameter. The thick line is the probability that the 
l random variable is less than the deviation p. 

determine if the more complex model provides a signifi­
cantly better fit. 
An Ecological Scenario. To illustrate the use of likelihood 

for model selection, consider a model (Schnute 1987) relat­
ing the number of animals recorded by observers in a survey 
(an index of abundance 1) to the true abundance D by 

1= max{o p + qD} 
, I + rD ' (7.43) 

where p, q, and r are parameters. We obtain a series of 
nested models by setting one or all of the parameters equal 
to O. In the simplest case, when r = p = 0, the index is 
proportional to the number of animals present with con­
stant of proportionality q, 

1= qD. 
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The parameter p allows for the possibility that we may 
conclude that even when no animals are present some are 

. recorded (p > 0), or that we will not see any animals when 
they are rare (p < 0). The parameter r allows for non­
linearity between the index and the true abundance. Sup­
pose that the number of individuals observed, lobs' is the 
true number plus an observation uncertainty V that is Pois­
son distributed. Thus, lobs = I + V will always equal or ex­
ceed the true number because V::::: O. As before, we begin by 
using Monte Carlo simulation to generate data in which we 
know the true situation: 

Pseudocode 7.4 

1. Read in values of q = 1.0, r = 0.03, and p = - 3. 

2. Set D = 1. 

3. Calculate the detenninistic values from Equation 7.43. 

4. Calculate the actual observation by adding a Poisson 

distributed tenn to the result from step 3. 

5. Increment the value of D by 1 and repeat steps 3 and 4 

until D > 20. 

The squares in Figure 7.7 are the data that result from 
this pseudocode (Table 7.1). The dashed line is the true 
relationship between the index and abundance. As is typical 
of Poisson processes (in which the variance is equal to the 
mean), there is more variability at higher expected values of 
the index. There are four possible models: 

Model A: Only q determines the relationship (i.e., p and r 
are assumed to be equal to zero) between D and I 

Model B: The parameters q and p determine the relation­
ship between D and I 

Model C: The parameters q and r determine the relation­
ship between D and I 

Model D: All three parameters determine the relationship 
between D and I 
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FIGURE 7.7. One set of data (squares) generated from Pseudocode 7.4 
with q = 1, r = 0.03, and p = - 3. The dashed line shows the true 
relationship and the solid line shows the linear model fit to the data. 

TABLE 7.l. Data generated from Pseudocode 7.4. 

Density Index from Equation 7.43 Number observed 

1 0 0 
2 0 0 
3 0 0 
4 0.89 2 
5 1.74 0 
6 2.54 4 
7 3.31 4 
8 4.03 5 
9 4.72 2 

10 5.38 6 
11 6.02 6 
12 6.62 13 
13 7.19 9 
14 7.75 9 
15 8.28 6 
16 8.78 lO 
17 9.27 6 
18 9.74 11 
19 lO.19 15 
20 10.63 15 
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TABLE 7.2. Parameters and negative log-likelihoods for the four 
models of abundance. 

Value of: Number of Negative log-
Model q p parameters likelihood 

A 0.586 1 42.47 
B 0.793 -2.29 2 38.38 
C 0.393 -0.023 2 40.92 
D 0.987 -2.96 0.0157 3 38.22 

Given a set of data generated by the previous pseudocode, 
we can estimate the likelihoods for each of the four models 
using the following pseudocode: 

Pseudocode 7.5 

1. Input the data as in Table 7.1 and starting values for the 

parameters q, p, and r. 

2. Specify which model is to be used to make predictions. 

3. Compute the likelihood as follows: 

a. Cycle from D = 1 to 20. 

b. Calculate the predicted abundance II'''' using 

Equation 7.43. 

c. Calculate the negative log-likelihood of observing lobs 

given Ipre and add this negative log-likelihood to the 

total negative log-likelihood. 

d. Repeat steps a-(' for each data point. 

4, Sum negative log-liklihood for each data point. 

5. Repeat steps 2-4 for each model. 

We then combine the likelihood calculation with a non­
linear-function minimization routine to calculate the best 
estimates for each model (Table 7.2). Model B reduces the 
negative log-likelihood by over four units by adding one pa­
rameter. Since twice the difference in likelihoods must be at 
least 3.84 for the models to differ at the 0.05 level, the dif­
ference in the log-likelihoods between model A and model 
B is clearly significant. Models Band C have the same num­
ber of parameters, so model B is clearly preferred. Model D 
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TABLE 7.3. Number of times in one hundred Monte Carlo trials 
that each of the four abundance models was selected. 

Model 

A 
B 
C 
D 

Parameters 

q only 
qand p 
q and r 

q, p, and r 

Number of times selected 
with one hundred 

Monte Carlo data sets 

14 
79 
o 
7 

fits the data better than model B, but the difference in neg­
ative log-likelihood is very small, and not significant accord­
ing to the likelihood ratio test. Therefore we conclude that 
for this set of data model B is the "best." 

In this particular case (for the data shown in Figure 7.7), 
the estimation procedure failed to detect the nonlinearity 
between the index abundance and real abundance but did 
detect the non-zero intercept. When we repeat this pro­
cedure with many different Monte Carlo-generated sets 
of data, we find quite frequently that model A is preferred 
(Table 7.3). 

Akaike Information Criterion (AIC) for Non-nested Models 

The likelihood ratio test provides a simple and powerful 
format for comparing alternative models, but requires that 
the models being compared be nested, that is, the more 
complex model reduces to the simpler model by setting pa­
rameters equal to O. When dealing with non-nested models, 
the Akaike information criterion (AlC) is normally used 
(Akaike 1973; Sakamota et al. 1986). Whereas the likelihood 
ratio test is based on an inferential criterion, the AlC is 
based on an optimization criterion (Akaike 1985, 1992; de­
Leeuw 1992). 

The AlC for model Mi with Pi parameters is 

Ai = L( YIMi ) + 2p;. 
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The model selection criterion is that the best model is the 
one that has the lowest AlC. By adding 2 to the negative log­
likelihood for every free parameter, we are "penalizing" the 
goodness of fit in a way that is similar to the likelihood ratio 
test. We compare models by looking at differences in the 
AlC and are once again implicitly using a form of the likeli­
hood ratio test, although the AlC is considered valid when 
using non-nested models. 

Sakamoto et al. (1986) describe an alternative to the AlC 
called the Bayesian information criterion or BIC (Schwarz 
1978). Hongzhi (1989) proposed an analog of the AlC for 
use with the sum of squares. The proposal is to use 10g(SSQk) 
+ 2k/ n as the analog of Equation 7.45, where SSQk is the 
residual sum of squares for the model with k parameters, 
and n is the number of points. Anderson et al. (1994) evalu­
ate the performance of the AlC for model selection in cap­
ture-recapture data. Matsumiya (1990), Hiramatsu and 
Kitada (1991), and Hiyama and Kitahara (1993) provide ex­
amples of the use of the AlC in fisheries problems. 

Which Criterion to Use? 

The AlC is appropriate for non-nested models but for 
nested models either the likelihood ratio or the AlC can be 
used. As a note of caution, when using the Poisson or multi­
nomial likelihoods and if the data are overdispersed, the like­
lihood ratio test or the AlC will be biased, and the analysis of 
deviance (McCullagh and NeIder 1989) is appropriate. 

ROBUSTNESS: DON'T LET OUTLIERS RUIN YOUR LIFE 

Our colleague David Fournier once said, "The problem 
with likelihood is that some observations are just too un­
likely." That is, some outliers will dominate the likelihood, 
and the fitting procedures often go to great lengths to make 
predictions closer to the outlier so that the total likelihood 

will not be too low. 
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"Robust estimation" has two meanings (Huber 1981). 
First, what happens if the assumption of normally distrib­
uted uncertainty is not appropriate, which is often the case 
for ecological data sets? Second, how does one deal with 
one or two data points that are highly irregular (greatly de­
viate from the pattern suggested by the other data)? We al­
ready discussed one approach when we considered the 
goodness of fit provided by the sum of squares. In that case, 
we noted that the use of the square of the deviation be­
tween the observed and predicted data points is implicitly 
based on an assumption of normally distributed uncertainty, 
but that other measures of deviation such as absolute value 
(or even fractional powers of the absolute value) could be 
used just as easily. Most of these have the effect of reducing 
the penalty which the outliers contribute to the sum of the 
deviations. 

Another approach (Press et al. 1986,539 ff.) is to weight 
the data points in the sum of squares or the likelihood. For 
example, one could use Tukey's "biweight" 

co(e) = weight assigned to uncertainty of size e 

if lei < c, 

=0 if lei> c, (7.46) 

where c is a constant chosen by the user (Press et al. 1986, 
542). (For normally distributed uncertainty, the appropriate 
value of cis 6.0). This weighting function actually decreases 
as e increases, and is consonant with the idea that outliers 
might be caused by something other than the actual ecolog­
ical processes being studied. For example, to modiry the 
simple sum of squares 

n 

~ (Ypre,i - Yobs ,i)2, 
i= I 
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n 

L m(ei) (Ypre,i - Yah.,i)2. 
i= 1 

(7.47) 

where ei = Ypre,i - Yah.,i' One way to think about outliers is 
that for any data point there is a probability Pmodel that the 
point arose from the model that you are considering and a 
probability 1 - Pmodcl that it arose from a process other 
than the one specified in the model. Then the likelihood of 
a particular point is really Pmodel:£ (datalmodel) + (1 -
Pmodel):£(datalalternative processes). In general, we assume 
that Pmodel = 1. To use this approach, one needs to begin to 
specify what the alternative processes are; in effect, one 
must specify alternative models (Schnute 1993; Schnute and 
Hilborn 1993). 

BOUNDING THE ESTIMATED PARAMETER: 

CONFIDENCE INTERVALS 

We must always be aware that the most likely parameters 
are almost certainly not the real parameters of the underly­
ing process, but rather depend on the data. How do we de­
termine reasonable bounds for the estimated parameter? In 
this section we explore two approaches to quantifying un­
certainty about parameter values. 

Likelihood Profile 

Hudson (1971) provides an especially simple method for 
determining a confidence bound for the case in which (i) 
we consider a model with only one parameter and (ii) the 
log-likelihood function is a unimodal function of the param­
eter. Hudson's method is a special case of the general tech­
nique of the likelihood profile. Using the likelihood ratio 
test (the theory relies, once again, on the asymptotic rela­
tionship followed by the differences in log-likelihood), the 
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95% confidence interval is the range of parameters for 
which the log-likelihood is within 1.92 of the maximum 
value of the log-likelihood. Thus, for example, to find the 
confidence interval for the Poisson rate parameter for the 
negative log-likelihoods shown in Figure 7.1c, we draw a 
horizontal line at the minimum negative log-likelihood plus 
1.92 (the critical value of c2 with one degree of freedom 
divided by 2) and look for the intersections of that line and 
the curve. Those intersection points give the limits of the 
confidence interval. 
An Ecological Scenario. Suppose that we are involved in 

the control of mites that attack pistachios and have decided 
that if fewer than 10% of the nuts are attacked, the mite is 
being controlled. We want to determine the proportion in­
fested (j) by sampling nuts. If the true level of infestation is 
fand we sample S nuts, the number I that are infested fol­
lows a binomial distribution: 

Pr{I = ilf} = ( ~) P(l - f)S-i. 
(7.48) 

If we view this as the likelihood of values off, given Sand i, 
the negative log-likelihood is 

L{S,ilf} = - i log(j) - (S - i) log(l - f) + J, (7.49) 

where J denotes terms that do not depend on f and can 
therefore be ignored. Setting the derivative of L{S,ilf} with 
respect to f equal to 0 leads us to the MLE value 

1 

fMLE = s· (7.50) 

We use the likelihood ratio test to determine the approxi­
mate 95% confidence interval for fby finding the value off 
such that the log-likelihood L{S,ilf} - L{fMLEIS,i} = 1.92. 
Furthermore, we can do this with a sequential sampling 
scheme, as in the following pseudocode: 
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Pseudocode 7.6 

1. Set S = 0, i = o. 
2. Input the number of nuts sampled and the number of 

sampled nuts that were infested. Replace S by S plus the 

number of sampled nuts and i by i plus the number of 

infested nuts in the current sample. 

3. Find the MLE value JMLE = i/ S. Find the negative log­

likelihood associated with this MLE from Equation 7.49. 

4. Find the value of Jb such that 

L{JbIS,i} = L{fMLEIS,i} + 1.92. 

If this value of J:5 0.1, declare the mite under control. 

OtheIWise return to step 2. 

A typical set of results using this pseudocode would be 
these. 

Sample Current Infested Total Total 
number sample nuts sample infested JMLE 

1 
2 
3 
4 
5 

20 2 20 2 0.1 
20 1 40 3 0.075 
20 1 60 4 0.067 
20 0 80 4 0.05 
20 0 100 4 0.04 

Note that after the first sample, the MLE is already 0.1, but 
the boundary of the 95% confidence interval for the true 
value of Jis 0.283, so that we must continue sampling. It is 
only at sample 5, for which the MLE is 0.04 and the bound­
ary of the confidence interval is 0.092, that we can declare 
the mite under control. Now, of course, had we sampled 
one-hundred nuts at the start and found four of them in­
fested, we would draw the same conclusion as was done 
after the fifth sample. The advantage of the sequential sam-
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pIing scheme, using likelihood, is that we might be able to 
stop even sooner. 

The likelihood profile can be extended for situations in 
which the model has more than one parameter. For exam­
ple, in the abundance model Equation 7.43, the best model 
had two free parameters, q and p. In such a case, we might 
want to know about the confidence intervals for q and p, 
either separately or together. 

To conduct a likelihood profile for a system with parame­
ters PI> P2, ... ,Pm, one varies one (or more) parameter(s) 
systematically and computes the values of the other parame­
ters that maximize the likelihood. It has the same function 
as a goodness-of-fit profile, giving information concerning 
how the parameters depend on each other, and how sensi­
tive the likelihood is to the systematically varied parameter 
(Venzon and Moolgavkar 1988). 

For example, suppose that the random variables XI> ... , 
x" are normally distributed with mean m and standard devi­
ation <.T. The negative log-likelihood is then 

1 ~ (Xi - m)2 
L = n[log(<.T) + -2 10g(21T)] + £..i 2' 

2<.T 
i= 1 (7.51) 

from which we determine the maximum likelihood estimates, 

1 n 

=- L Xi n 
and 

i = 1 

i= 1 (7.52) 

A likelihood profile is appropriate for a situation where 
we are interested in one parameter but not particularly in­
terested in the other. If the parameter of interest is the 
mean, we systematically search over values of m and instead 
of <.TMLE, we compute the profile standard deviation 
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FIGURE 7.8. The negative log-likelihood for the mean m of a normal 
distribution when the variance is known, and the profile likelihood in 
which the variance is specified once the mean is given. Note that both 
the negative log-likelihood and likelihood profile find the mean, but 
that the likelihood profile is shallower (more uncertainty) when the 
variance is unknown. 

2 
(J" pro 

1 ~ 2 - L.. (Xi - m) . n 
i= 1 (7.53) 

For example, if the data are 27.7286, 16.4676, 21.1222, 
27.6477, 10.4809, and 13.9685 (generated from m = 20 and 
(J" = 8), plots of the negative log-likelihood and likelihood 
profile find the true mean (Figure 7.8), but admitting that 
the standard deviation is unknown leads to a shallower neg­
ative log-likelihood and consequently to a wider confidence 
interval. 
An Ecological Scenario. To find the likelihood profile for q 

for the abundance model Equation 7.43, we find the values 
of p and r that maximize the likelihood for each possible 
value of q (or, in reality, a grid search over q), as in the 
following pseudocode: 
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Pseudocode 7.7 

1. Input the lower and upper bounds, and the step size of q 
to search. 

2. Set q fixed at the lower bound. 

3. Choose one of: 

Option a. Calculate the negative log-likelihood by using 

true values of rand p. 
Option b. Minimize the negative log-likelihood by 

searching over possible values of rand p (the 

true likelihood profile). 

4. Plot or table the values of q and the negative log­

likelihood. 

S. Increment q and repeat steps 3 and 4. 

This algorithm allows for two cases. First (step 3, option 
a), we fix the other parameters (r and p) at their true values 
(known because we have used Monte Carlo data) and exam­
ine the likelihood in q. This will demonstrate how much 
more we would know about q if the values of rand p were 
known. That is, instead of the MLE values, we use the true 
values of the other parameters. The results (Figure 7.9, 
dashed line) are quite impressive. The confidence interval 
for q is very narrow. Second (step 3, option b), we find the r 
and p that maximize the likelihood as q is systematically var­
ied; this is the likelihood profile. The results (Figure 7.9, 
solid line) are discouraging. We can fit the data very well 
(i.e., the negative log-likelihood is small) with very large 
values of q. For example, the dashed line in Figure 7.10 
shows the fit obtained when q = 10, P = - 40, and r = 

1.58. This curve is very similar to the true relationship, but 
clearly the individual parameter values are far from the true 
values (recall that a similar phenomenon occurred in Chap­
ter 5). The confidence bound on q is enormous. In effect, 
admitting uncertainty in p and r means that we know noth­
ing about the value of the individual parameter q. 
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FIGURE 7.9. Likelihood profiles of q when p and T are estimated parameters 
(solid line) and when p and T are fixed at their true values (dashed). 

THE BOOTSTRAP METHOD 

In Chapters 5 and 6, we used the bootstrap method to 
resample data sets for model comparison. Here we extend 
its use for understanding the uncertainty about parameter 
values. The bootstrap method can be used to find confi­
dence intervals and variances of models of any complexity 
by intense computation (Efron and Tibshirani 1991, 1993). 
As before, the bootstrap method involves generation of new 
data sets by sampling the original data with replacement. 
We begin with a set of N observations {Y;, ... , YN }. We 
generate a large number of new data sets {Yboot (i)} by sam­
pling from Yobs with replacement and then generate a large 
number of bootstrap data sets. For each bootstrap data set 
we obtain an estimate of the parameters of interest and esti­
mate the variances of the parameters from the variances of 
the bootstrap estimates. 
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FIGURE 7.10. Data generated by the Monte Carlo method for the abun­
dance model Equation 7.43. The true relationship is shown by the solid 
line. and a model with q = 10, P = -40, and r = 1.58 is shown by the 
dashed line. 

Suppose that there is just one parameter, that we gener­
ate B bootstrap data sets, and that /Jboot,i is the parameter 
estimate from the i th bootstrap data set. We first set 

B 

hoot= 2: Pboot,;/ B. 
i= 1 

We estimate the variance by 

1 B 

""-" 2 B-1 £.J (Pboot - Pboot,;) . 

i= 1 

(7.54) 

(7.55) 

Returning once again to the abundance model Equation 
7.43, we might want to use the bootstrap method to estimate 
the variance of the parameter q. This can be done using a 
pseudocode such as: 
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FIGURE 7.11. The distribution of estimates of q from one thousand boot­
strap replicates. The solid line is the cumulative distribution function. 

Pseudocode 7.8 

1. Read in observed densities and index of abundance 

from Table 7.1 

2. Set r = 0, p = O. 

3. Generate a bootstrap data set by sampling with 

replacement from the data twenty pairs of D; and lobs.;' 

4. Obtain the maximum likelihood estimate of q from the 

bootstrap data. 

5. Repeat steps 3-5 1000-10000 times. 

6. Plot the frequency distribution of the estimated q values. 

The output of a program based on this algorithm is a 
frequency distribution of estimates of q (Figure 7.11). Given 
a variance estimate from Equation 7.55, we can calculate the 
confidence bounds in the usual manner using normal distri­
bution theory, or we can use the empirical frequency distri-
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bution of the bootstrap estimates. In the latter case, the 
bootstrap provides a link between the likelihood methods in 
this chapter and the Bayesian methods of Chapter 9. 

The bootstrap method as described here is often called 
the non-parametric bootstrap. A refinement, based on some 
knowledge of the ecological system, is to assume a distribu­
tion for the uncertainty; instead of resampling the data we 
add a random term to the predicted data based on the as­
sumed distribution. That is, we now generate bootstrap data 
sets by taking the ith observation Ypre•i and adding a random 
variable E to it: 

Yboot.i = Ypre,i + E, (7.56) 

where E is drawn from the assumed distribution. In princi­
ple, this should be "better" because we are incorporating 
more knowledge about the system into the methods of esti­
mation. We leave it to you to modify the previous pseu­
docode for the case in which E has a Poisson distribution. 
Doing this leads to a different frequency distribution of 
bootstrap estimates (Figure 7.12) 

Bootstrapping is a computationally intensive procedure, 
but it can be used on models that have dozens or even hun­
dreds of parameters. Obtaining an estimate for large models 
may take minutes or even hours. It is not unknown for boot­
strap runs to take several days on desktop computers, and 
obtaining a 99% confidence interval requires about 10 000 
bootstrap samples (Efron and Tibshirani 1991, 1993). 

LINEAR REGRESSION, ANALYSIS OF VARIANCE, AND 

MAXIMUM LIKELIHOOD 

The statistical tools learned in introductory courses III 

biometrics were designed in an age when computation was 
difficult (Efron and Tibshirani 1991), but things are differ­
en t today. We now show that they can be performed using 
the methods of maximum likelihood and the likelihood ra-
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FIGURE 7.12. Estimates of q from one thousand replicates of the parametric 
bootstrap. 

tio test but in a numerically intensive manner, thus taking 
advantage of modem computing technologies. 

It is easier to understand statistics within the unifYing con­
cept of likelihood rather than thinking of regression, anal­
ysis of variance, and contingency tables as intellectually sep­
arate subjects. 

Regression as a Problem of Maximum Likelihood 

The linear regression model is 

Yi = a + bXi + Zi' (7.57) 

where the parameters a and b are to be determined and Zi is 
normally distributed with mean 0 and variance 0"2. Proceed­
ing as before, the negative log-likelihood is 

L= 
1 

n[log(O") + "2 log (21T) ] 

1 n 
+ -2~ (Yi -

20" 
i= 1 
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A nonlinear search over a, b, and (J' can be used to mini­
mize the negative log-likelihood. However, the maximum 
likelihood estimates of a and b are solutions of the linear 

equations 

n n 

i=1 i= 1 

n n n 

i= 1 i=1 i=1 (7.59) 

found by taking the derivative of the likelihood with respect 
to a or b and setting it equal to zero. 

Note that these are independent of the variance, which 
we estimate by 

(7.60) 

A two-dimensional confidence interval on a and b is found 
by searching over all values of a and b that provide likeli­
hoods within a specified value of the minimum negative log­
likelihood. For example, for a 95% confidence interval, we 
use a chi-square distribution with two degrees of freedom, for 
which the critical value is 6.0. Thus, we contour all negative 
log-likelihoods that are three greater than the best value. 

On the other hand, we might be interested in a single pa­
rameter, say b, and not at all interested in the other parame­
ter, so that a likelihood profile on b is appropriate. We first 
specify b in the negative log-likelihood and then compute 
that value of a that minimizes the negative log-likelihood for 
that value of b. This can be done from Equation 7.59: 

n n 

~ Yi - b ~ Xi 
i= 1 i= 1 

n (7.61 ) 
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Since this is now a one-parameter confidence bound, the 
critical chi-square value is 3.84, so values of negative log­
likelihood that are 1.92 greater than the minimum are in 
the 95% confidence interval. 

To illustrate these ideas, we generated data from the 
model Yi = 1 + 2Xi + Zi, with 0' = 5. A typical set of ten 
data points is: 

Xi Yi 

1 7.83037 
2 2.79227 
3 7.70137 
4 13.7798 
5 5.05055 
6 9.23033 
7 3.452 11 
8 11.952 8 
9 23.8559 

10 22.0885 

for which aMLE = 1.77, bMLE = 1.641, O'MLE = 5.69, and 
the minimum negative log-likelihood is 30.5738. 

The 95% confidence contour for both parameters (Fig­
ure 7.13) is an ellipse with a negative correlation between 
the estimated values of a and b. The data allow a to be large, 
but then b must be small, and vice versa. The likelihood 
profile on b (Figure 7.14) considerably tightens the confi­
dence region. 

A good ecological detective will recognize that there are 
other models, such as 

Yi=k+Zi (average value model), 

Yi = a + bXi + CXi2 + Zi 
(quadratic regression model). (7.62) 

We encourage you to compute the negative log-likelihoods 
for these other models with one and three parameters, re-
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FIGURE 7.13. The 95% confidence region, detennined by maximum 
likelihood analysis, for the parameters a and b of the linear regression 
model. 

20 

spectively, and compare the results with the regression 
model that we analyzed (two parameters). Which model 
would you choose on the basis of a likelihood criterion? 

Regression methods also usually report the "proportion of 
variance explained by the model." Here, likelihood methods 
provide little additional information. However, Bayesian 
methods tell us that we should not attempt to "explain varia­
tion"; instead, we should construct posterior probability 
densities and ask about the shape of those distributions. M­

ter reading Chapter 9, we encourage you to rethink this 
analysis from a Bayesian perspective. ·What kind of priors 
would you choose for a and b? 

Finally, we encourage you to experiment with a situation 
in which we do not know the underlying model. Sokal and 
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FIGURE 7.14. The likelihood profile of the parameter b and the 95% 
confidence region (below the solid line) in the linear regression 
model. 

Rohlf (1969) report experiments in which twenty-five indi­
vidual flour beetles were starved for six days at nine differ­
ent humidities. The data are: 

Relative humidity 
(%) 

o 
12 
29.5 
43 
53 
62.5 
75.5 
85 
93 

176 

Average weight loss 
(mg) 

8.98 
8.14 
6.67 
6.08 
5.9 
5.83 
4.68 
4.2 
3.72 
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Since the weight loss shows a clear trend with relative hu­
midity, a linear regression model might be appropriate. 
What can you conclude about these data? 

Analysis of Variance Uy Maximum Likelihood 

TABLE 7.4. Mosquito wing lengths (Sokal and Rohlf 1969). 

Left wing length 
measurement 

Cage Female First Second 

1 1 58.5 59.5 
1 2 77.8 80.9 
1 3 84.0 83.6 
1 4 70.l 68.3 
2 5 69.8 69.8 
2 6 56.0 54.5 
2 7 50.7 49.3 
2 8 63.8 65.8 
3 9 56.6 57.5 
3 10 77.8 79.2 
3 11 69.9 69.2 
3 12 62.1 64.5 

We now show how a traditional analysis of variance can be 
performed using maximum likelihood theory. Sokal and 
Rohlf (1969) describe an experiment in which twelve field­
caught mosquito pupae were reared in three different 
cages, four mosquitoes to each cage. When the mosquitoes 
hatched, the left wing of each mosquito was measured twice 
(Table 7.4). The observations are thus the wing length Lij 
for female i on observation j, and the cage in which female i 
is reared, Ci' We postulate three different models: 

Lij = K + Zij (model A), 

Lij = Dc, + Zij (model B), 

(model C). 
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In each model, Zij is normally distributed. The alternatives 
are (i) the observations are normally distributed about some 
constant (K) (model A); (ii) there is a different average 
length (Dc) within each cage (model B); or (iii) there is a 
different average length (Fi) for each individual fly (model 
C). 

The likelihoods for the three models are 

12 2 1 
:£A = n n _/_exp ( 

<T A'I2'1T 
i= I j= I 

:£B 
12 2 2 nn-l- (_ [Lij - Dc) ) 

./-exp 2' 
<TB~2'1T 2<TB i= I j= 1 

12 2 2 
w _ n n 1 ([Lij - F;] ) oLe - --- exp - 2 • 

, i= I j= 1 <Te...f27i 2<Tc (7.74) 

In principle, each model has a different standard devia­
tion. When computing the negative log-likelihoods for the 
three models (Table 7.5), model A requires two parameters 
(the global mean and the standard deviation); the standard 
deviation can be obtained analytically. Model B requires 
four parameters, a mean for each cage, and a standard devi­
ation. Finally, model C requires a mean for each of the 
twelve flies and a standard deviation. 

TABLE 7.5. Analysis of variance by maximum likelihood for the 
mosquito data. 

Number of Negative Chi-square 
Model parameters log-likelihood probability' 

A (Average) 2 89.32 
B (Cage effect) 4 85.42 0.02 
C (Female effect) 13 28.90 -0.0000 

'Used to compare models A and B (with two degrees of freedom) and 
models Band C (with nine degrees of freedom). 
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When comparing models A and B, the negative log-likeli­
hood is reduced by about four by adding two additional pa­
rameters. Twice the difference in the likelihood between 
model A and model B is 7.8. The chi-square probability of a 
change in 7.80 with two degrees of freedom is about 0.02, so 
the significance of the difference is borderline (significant 
at 0.05 but not at 0.01). Comparing models Band C, how­
ever, we find a considerable reduction in the negative log­
likelihood and an associated chi-square probability that is 
essentially zero. We therefore conclude that there are differ­
ences between females and that model C is preferred. 
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